4 research outputs found

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+ee^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex

    QCD Form Factors and Hadron Helicity Non-Conservation

    Get PDF
    Recent data for the ratio R(Q)=QF2(Q2)/F1(Q2)R(Q)= QF_{2}(Q^{2})/F_{1}(Q^{2}) shocked the community by disobeying expectations held for 50 years. We examine the status of perturbative QCD predictions for helicity-flip form factors. Contrary to common belief, we find there is no rule of hadron helicity conservation for form factors. Instead the analysis yields an inequality that the leading power of helicity-flip processes may equal or exceed the power of helicity conserving processes. Numerical calculations support the rule, and extend the result to the regime of laboratory momentum transfer Q2Q^{2}. Quark orbital angular momentum, an important feature of the helicity flip processes, may play a role in all form factors at large Q2Q^{2}, depending on the quark wave functions.Comment: 25 pages, 5 figure

    Polarization measurements in neutral pion photoproduction

    No full text
    corecore