503 research outputs found

    Multiplicative renormalizability of gluon and ghost propagators in QCD

    Get PDF
    We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormalization constants, and the renormalization point dependence enters only through the renormalized coupling and the renormalized propagator functions. The structure of the equations enables us to devise novel truncations with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon loops shows that they too need to be considered in more detail before a definite conclusion about the existence of infrared power behaved gluon and ghost propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.

    Gauge Dependence of Mass and Condensate in Chirally Asymmetric Phase of Quenched QED3

    Get PDF
    We study three dimensional quenched Quantum Electrodynamics in the bare vertex approximation. We investigate the gauge dependence of the dynamically generated Euclidean mass of the fermion and the chiral condensate for a wide range of values of the covariant gauge parameter Ο\xi. We find that (i) away from Ο=0\xi=0, gauge dependence of the said quantities is considerably reduced without resorting to sophisticated vertex {\em ansatze}, (ii) wavefunction renormalization plays an important role in restoring gauge invariance and (iii) the Ward-Green-Takahashi identity seems to increase the gauge dependence when used in conjunction with some simplifying assumptions. In the Landau gauge, we also verify that our results are in agreement with those based upon dimensional regularization scheme within the numerical accuracy available.Comment: 14 pages, 11 figures, uses revte

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Density of states "width parity" effect in d-wave superconducting quantum wires

    Full text link
    We calculate the density of states (DOS) in a clean mesoscopic d-wave superconducting quantum wire, i.e. a sample of infinite length but finite width NN. For open boundary conditions, the DOS at zero energy is found to be zero if NN is even, and nonzero if NN is odd. At finite chemical potential, all chains are gapped but the qualtitative differences between even and odd NN remain.Comment: 7 pages, 8 figures, new figures and extended discussio

    Spontaneous Chiral-Symmetry Breaking in Three-Dimensional QED with a Chern--Simons Term

    Full text link
    In three-dimensional QED with a Chern--Simons term we study the phase structure associated with chiral-symmetry breaking in the framework of the Schwinger--Dyson equation. We give detailed analyses on the analytical and numerical solutions for the Schwinger--Dyson equation of the fermion propagator, where the nonlocal gauge-fixing procedure is adopted to avoid wave-function renormalization for the fermion. In the absence of the Chern--Simons term, there exists a finite critical number of four-component fermion flavors, at which a continuous (infinite-order) chiral phase transition takes place and below which the chiral symmetry is spontaneously broken. In the presence of the Chern--Simons term, we find that the spontaneous chiral-symmetry-breaking transition continues to exist, but the type of phase transition turns into a discontinuous first-order transition. A simple stability argument is given based on the effective potential, whose stationary point gives the solution of the Schwinger-Dyson equation.Comment: 34 pages, revtex, with 9 postscriptfigures appended (uuencoded

    Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics

    Get PDF
    We study the gauge covariance of the massive fermion propagator in three as well as four dimensional Quantum Electrodynamics (QED). Starting from its value at the lowest order in perturbation theory, we evaluate a non-perturbative expression for it by means of its Landau-Khalatnikov-Fradkin (LKF) transformation. We compare the perturbative expansion of our findings with the known one loop results and observe perfect agreement upto a gauge parameter independent term, a difference permitted by the structure of the LKF transformations.Comment: 9 pages, no figures, uses revte

    Regularization-independent study of renormalized non-perturbative quenched QED

    Get PDF
    A recently proposed regularization-independent method is used for the first time to solve the renormalized fermion Schwinger-Dyson equation numerically in quenched QED4_4. The Curtis-Pennington vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the alternative regularization schemes of modified ultraviolet cut-off and dimensional regularization. Our new results are in excellent numerical agreement with these, and so we can now conclude with confidence that there is no residual regularization dependence in these results. Moreover, from a computational point of view the regularization independent method has enormous advantages, since all integrals are absolutely convergent by construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power law behaviour in the asymptotic region, which is confirmed numerically with high precision. The successful demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken in the near future.Comment: 20 pages,5 figure

    Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators

    Full text link
    The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.Comment: REVTEX, 7 figures (available upon request), IFT-P.037/93, DOE/ER/40427-12-N9

    Renormalization and Chiral Symmetry Breaking in Quenched QED in Arbitrary Covariant Gauge

    Get PDF
    We extend a previous Landau-gauge study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in strong-coupling, quenched QED_4 to arbitrary covariant gauges. We use the fermion-photon proper vertex proposed by Curtis and Pennington with an additional correction term included to compensate for the small gauge-dependence induced by the ultraviolet regulator. We discuss the chiral limit and the onset of dynamical chiral symmetry breaking in the presence of nonperturbative renormalization. We extract the critical coupling in several different gauges and find evidence of a small residual gauge-dependence in this quantity.Comment: REVTEX 3.0, 27 pages including 14 Extended Postscript files comprising 9 figures. Replacement: discussion of chiral limit corrected, and some minor typographical errors fixed. To appear in Phys. Rev.

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure
    • 

    corecore