12 research outputs found

    Procedural and declarative knowledge: an evolutionary perspective

    Get PDF
    It appears that there are resemblances in the organization of memory and the visual system, although the functions of these faculties differ considerably. In this article, the principles behind this organization are discussed. One important principle regards the distinction between declarative and procedural knowledge, between knowing that and knowing how. Declarative knowledge is considered here not as an alternative kind of knowledge, as is usually the case in theories of memory, but as part of procedural knowledge. In our view this leads to another approach with respect to the distinction. Declarative knowledge has occupied more attention in (cognitive) psychological research than can be justified on the basis of the importance of procedural knowledge for behavior. We also discuss the question whether there are other brain faculties that reflect the same organizational characteristics. We conclude with some speculations about the consequent role of consciousness in such a tentative model

    Motor Learning and Consolidation: The Case of Visuomotor Rotation

    No full text
    Abstract Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learn-ing. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning)
    corecore