2 research outputs found
Role of electrostatic interactions in amyloid beta-protein (Abeta) oligomer formation: A discrete molecular dynamics study
Pathological folding and oligomer formation of the amyloid beta-protein
(Abeta) are widely perceived as central to Alzheimer's disease (AD).
Experimental approaches to study Abeta self-assembly are problematic, because
most relevant aggregates are quasi-stable and inhomogeneous. We apply a
discrete molecular dynamics (DMD) approach combined with a four-bead protein
model to study oligomer formation of the amyloid beta-protein (Abeta). We
address the differences between the two most common Abeta alloforms, Abeta40
and Abeta42, which oligomerize differently in vitro. We study how the presence
of electrostatic interactions (EIs) between pairs of charged amino acids
affects Abeta40 and Abeta42 oligomer formation. Our results indicate that EIs
promote formation of larger oligomers in both Abeta40 and Abeta42. The Abeta40
size distribution remains unimodal, whereas the Abeta42 distribution is
trimodal, as observed experimentally. Abeta42 folded structure is characterized
by a turn in the C-terminus that is not present in Abeta40. We show that the
same C-terminal region is also responsible for the strongest intermolecular
contacts in Abeta42 pentamers and larger oligomers. Our results suggest that
this C-terminal region plays a key role in the formation of Abeta42 oligomers
and the relative importance of this region increases in the presence of EIs.
These results suggest that inhibitors targeting the C-terminal region of
Abeta42 oligomers may be able to prevent oligomer formation or structurally
modify the assemblies to reduce their toxicity.Comment: Accepted for publication at Biophysical Journa