17 research outputs found

    Performance analysis of uml models using aspect-oriented modeling techniques, in

    No full text
    Abstract. Aspect-Oriented Modeling (AOM) techniques allow software designers to isolate and address separately solutions for crosscutting concerns (such as security, reliability, new functional features, etc.) This paper proposes an approach for analyzing the performance effects of a given aspect on the overall system performance, after the composition of the aspect model with the primary model of a system. Performance analysis of UML models is enabled by the "UML Performance Profile for Schedulability, Performance and Time" (SPT) standardized by OMG, which defines a set of quantitative performance annotations to be added to a UML model. The first step of the proposed approach is to add performance annotations to both the primary model and to the aspect model(s). An aspect model is generic at first, and therefore its performance annotations must be parameterized. A generic model will be converted into a context-specific aspect model with concrete values assigned to its performance annotations. The latter is composed with the primary model, generating a complete annotated UML model. By using existing techniques, the complete model is transformed automatically into a Layered Queueing Network (LQN) performance model, which can be analyzed with existing solvers. The proposed approach is illustrated with a case study system, whose primary model is enhanced with some security features by using AOM. The LQN model of the primary system was validated against measurements in previous work. The performance effects of the security aspect under consideration are analyzed in two design alternatives by using the LQN model of the composed sy stem. 1

    Transformation challenges: from software models to performance models

    No full text
    A software model can be analysed for non-functional requirements by extending it with suitable annotations and transforming it into analysis models for the corresponding non-functional properties. For quantitative performance evaluation, suitable annotations are standardized in the “UML Profile for Modeling and Analysis of Real-Time Embedded systems” (MARTE) and its predecessor, the “UML Profile for Schedulability, Performance and Time”. A range of different performance model types (such as queueing networks, Petri nets, stochast

    Performance Analysis of Security Aspects in UML Models

    Get PDF
    The focus of the paper is on the analysis of performance effects of different security solutions modeled as aspects in UML. Aspect oriented modeling (AOM) allows software designers to isolate and separately address solutions for crosscutting concerns, which are defined as distinct UML aspect models, then are composed with the primary UML model of the system under development. For performance analysis we use techniques developed previously in the PUMA project, which take as input UML models annotated with the standard UML Profile for Schedulability, Performance and Time (SPT), and transform them first into Core Scenario Model (CSM) and then into different performance models. The contribution of this paper is in performing the composition of the aspects with the primary model at the CSM level. The input is\ud represented by the primary model and a number of aspect models in UML+SPT, which are processed as follows: a) converted separately to CSM; b) composed into a single CSM model; c) transformed into a Layered Queueing Networks (LQN) model and d) analyzed. The proposed approach is illustrated with a case study based on two standards, TPC-W and SSL

    Performance by Unified Model Analysis (PUMA)

    No full text
    Evaluation of non-functional properties of a design (such as performance, dependability, security, etc.) can be enabled by design annotations specific to the property to be evaluated. Performance properties, for instance,

    Performance analysis of security aspects in UML models

    No full text
    The focus of the paper is on the analysis of performance effects of different security solutions modeled as aspects in UML. Aspect oriented modeling (AOM) allows software designers to isolate and separately address solutions for crosscutting concerns, which are defined as distinct UML aspect models, then are composed with the primary UML model of the system under development. For performance analysis we use techniques developed previously in the PUMA project, which take as input UML models annotated with the standard UML Profile for Schedulability, Performance and Time (SPT), and transform them first into Core Scenario Model (CSM) and then into different performance models. The contribution of this paper is in performing the composition of the aspects with the primary model at the CSM level. The input is represented by the primary model and a number of aspect models in UML+SPT, which are processed as follows: a) converted separately to CSM; b) composed into a single CSM model; c) transformed into a Layered Queueing Networks (LQN) model and d) analyzed. The proposed approach is illustrated with a case study based on two standards, TPC-W and SSL

    Performance analysis of security aspects by weaving scenarios extracted from UML models

    No full text
    Aspect-oriented modeling (AOM) allows software designers to describe features that address pervasive concerns separately as aspects, and to systematically incorporate the features into a design model using model composition techniques. The goal of this paper is to analyze the performance effects of different security features that may be represented as aspect models. This is part of a larger research effort to integrate methodologies and tools for the analysis of security and performance properties early in the software development process. In this paper, we describe an extension to the AOM approach that provides support for performance analysis. We use the performance analysis techniques developed previously in the PUMA project, which take as input UML models annotated with the standard UML Profile for Schedulability, Performance and Time (SPT), and transform them first into Core Scenario Model (CSM), and then into different performance models. The composition of the aspects with the primary (base) model is performed at the CSM level. A new formal definition of CSM properties and operations is described as a foundation for scenario-based weaving. The proposed approach is illustrated with an example that utilizes two standards, TPC-W and SSL
    corecore