17 research outputs found

    Alpha-1 antitrypsin mitigates the inhibition of airway epithelial cell repair by neutrophil elastase

    Get PDF
    Copyright © 2016 by the American Thoracic Society. Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epitheliumis prevented byuninhibitedNE.However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aimof this studywas to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (a1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAEC non-CF and pAEC CF , respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAEC CF wound repair was also assessed.We report that viability after 48 hours was significantly decreased by 100 nM NE in pAEC non-CF and pAEC CF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAEC CF , but this effect was reversed by the addition of a1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases inthe airway contribute directly toCF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma

    No full text
    Rationale: Convincing evidence of epithelial damage and aberrant repair exists in adult asthmatic airways, even in the absence of inflammation. However, comparable studies in children have been limited by access and availability of clinical samples. Objectives: To determine whether bronchial epithelial cells from children with asthma are inherently distinct from those obtained from children without asthma. Methods: Epithelial cells were obtained by nonbronchoscopic bronchial brushing of children with mild asthma (n = 7), atopic children without asthma (n = 9), and healthy children (n = 12). Cells were subject to morphologic, biochemical, molecular, and functional assessment. Responses were also compared with commercially available epithelial cultures and the transformed cell line 16HBE140. Results: All epithelial cells exhibited a "cobblestone" morphology, which was maintained throughout culture and repeated passage. Expression of cytokeratin 19 varied, with disease phenotype being greatest in healthy nonatopics and lowest in asthmatics. In contrast, expression of cytokeratin 5/14 was greatest in asthmatic samples and least in healthy nonatopic samples. Asthmatic epithelial cells also spontaneously produced significantly greater amounts of interleukin (IL)-6, prostaglandin E2, and epidermal growth factor, and equivalent amounts of IL-1β and soluble intracellular adhesion molecule-1, but significantly lower amounts of transforming growth factor β1. This profile was maintained through successive passages. Asthmatic epithelial cells also exhibited greater rates of proliferation than nonasthmatic cells. Conclusions: This study has shown that epithelial cells from children with mild asthma are intrinsically different both biochemically and functionally compared with epithelial cells from children without asthma. Importantly, these differences are maintained over successive passages, suggesting that they are not dependent on an in vivo environment

    Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells

    No full text
    The stability of housekeeping genes (HKGs) is critical when performing real-time quantitative PCR. To date, the stability of common HKGs has not been systematically compared in human airway epithelial cells (AEC) in normal and atopic subjects. Expression levels of 12 HKGs were measured in AECs from a cohort of 30 healthy atopic nonasthmatic or atopic asthmatic children. Gene expression stability was determined using three different Visual Basic for Applications applets (geNorm, NormFinder and BestKeeper). All 12 HKGs were expressed in AECs. However, the hypoxanthine ribosyltransferase and TATA-binding protein genes were excluded from further analysis due to low expression levels. The cyclophilin A gene was ranked the most stable by all three methods. The expression levels of the β-actin and glyceraldehyde-3-phosphate dehydrogenase genes were significantly different between the three groups of patients, with atopic asthmatics showing the highest expression levels for both genes. The results suggest that the cyclophilin A gene is the most suitable housekeeping gene analysed for expression studies utilising uncultured bronchial airway epithelial cells from healthy and asthmatic children, and highlight the importance of validating housekeeping genes for each experimental model. Copyright©ERS Journals Ltd 2008

    Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1

    No full text
    Rationale: Airway remodeling in asthma is associated with the accumulation of fibroblasts, the primary cell responsible for synthesis and secretion of extracellular matrix proteins. The process by which the number of fibroblasts increases in asthma is poorly understood, but epithelial-mesenchymal transition (EMT)may play a significant role. Objectives: To evaluate whether EMT occurs in primary airway epithelial cells (AECs), themechanisms involved, and if this process is altered in asthmatic AECs. Methods: AECs were obtained fromsubjects with asthma (n = 8) and normal subjects without asthma (n = 10). Monolayer and air-liquid interface-AEC (ALI-AEC) cultures were treated with transforming growth factor (TGF)-β1 (10 ng/ml) for 72 hours and assayed for mesenchymal and epithelial markers using quantitative polymerase chain reaction, confocal microscopy, and immunoblot. The involvement of BMP-7, Smad3, and MAPK-mediated signaling were also evaluated. Measurements and Main Results: TGF-β1-induced EMT in AEC monolayers derived from subjects with asthma and normal donors. EMT was characterized by changes in cellmorphology, increased expression of mesenchymal markers EDA-fibronectin, vimentin, α-smooth muscle actin, and collagen-1, and loss of epithelial markers E-cadherin and zonular occludin-1. Inhibition of TGF-β1-induced signaling with Smad3-inhibiting siRNA or TGF-β1-neutralizing antibodies prevented and reversed EMT, respectively, whereas BMP-7 had no effect. In ALIAEC cultures derived from normal subjects, EMT was confined to basally situated cells, whereas in asthmatic ALI-AEC cultures EMT was widespread throughout the epithelium. Conclusions: TGF-β1 induces EMT in a Smad3-dependent manner in primary AECs. However, in asthmatic-derived ALI-AEC cultures, the number of cells undergoing EMT is greater. These findings support the hypothesis that epithelial repair in asthmatic airways is dysregulated

    Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis

    No full text
    © ERS 2015. Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis. Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis. A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis. Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease
    corecore