1,076 research outputs found
Ground-state properties of the Rokhsar-Kivelson dimer model on the triangular lattice
We explicitly show that the Rokhsar-Kivelson dimer model on the triangular
lattice is a liquid with topological order. Using the Pfaffian technique, we
prove that the difference in local properties between the two topologically
degenerate ground states on the cylinders and on the tori decreases
exponentially with the system size. We compute the relevant correlation length
and show that it equals the correlation length of the vison operator.Comment: 10 pages, 9 figure
Pyrochlore Photons: The U(1) Spin Liquid in a S=1/2 Three-Dimensional Frustrated Magnet
We study the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in
the limit of strong easy-axis exchange anisotropy. We find, using only standard
techniques of degenerate perturbation theory, that the model has a U(1) gauge
symmetry generated by certain local rotations about the z-axis in spin space.
Upon addition of an extra local interaction in this and a related model with
spins on a three-dimensional network of corner-sharing octahedra, we can write
down the exact ground state wavefunction with no further approximations. Using
the properties of the soluble point we show that these models enter the U(1)
spin liquid phase, a novel fractionalized spin liquid with an emergent U(1)
gauge structure. This phase supports gapped S^z = 1/2 spinons carrying the U(1)
``electric'' gauge charge, a gapped topological point defect or ``magnetic''
monopole, and a gapless ``photon,'' which in spin language is a gapless,
linearly dispersing S^z = 0 collective mode. There are power-law spin
correlations with a nontrivial angular dependence, as well as novel U(1)
topological order. This state is stable to ALL zero-temperature perturbations
and exists over a finite extent of the phase diagram. Using a convenient
lattice version of electric-magnetic duality, we develop the effective
description of the U(1) spin liquid and the adjacent soluble point in terms of
Gaussian quantum electrodynamics and calculate a few of the universal
properties. The resulting picture is confirmed by our numerical analysis of the
soluble point wavefunction. Finally, we briefly discuss the prospects for
understanding this physics in a wider range of models and for making contact
with experiments.Comment: 22 pages, 14 figures. Further minor changes. To appear in Phys. Rev.
Ash, carbon isotope discrimination, and silicon as estimators of transpiration efficiency in crested wheatgrass
Breeding and selection for higher transpiration efficiency (W) has been hampered by tedious and costly
methodology. Rapid and less costly methods are needed for screening W in plant improvement
programmes. We report the relationship of ash, silicon (Si) concentration, and Si uptake to W in
crested wheatgrass (Agropyron desertorum [Fischer ex Link] Schultes), an important C3 range grass in
western North America. Clones of crested wheatgrass were grown under three water levels in a field
rainout shelter and as potted plants under two water levels in the field and greenhouse. Ash and Si
concentrations were compared to previously determined values of shoot mass, transpiration, W, and
carbon isotope discrimination (A). Ash and Si concentrations were not consistently related to ? and W
across all environments; however, ash concentration was positively correlated with ? (r=0•69**,
df = 22) and negatively correlated with W (r= -0•61**, df=22) in the well-watered field environment.
Across all environments and studies, the ranges in the coefficients of variation (CV, %) for clonal
means were: W, 4-15; ?, 1-4; ash concentration, 6-14; Si concentration, 13-30; and Si uptake, 21-33.
The generally lower CV for W, ?, and ash concentration suggest that these traits were more repeatable
than Si concentration or uptake. Although a consistent relationship was not observed between Si and
W and between ash and W, the correlations of ash and W from the well-watered field environment
were encouraging. In view of the low cost for ash analysis, we conclude that further research is needed
to evaluate the potential of ash as a criterion in selecting for improved W, particularly during the
early phases of a breeding programme when large populations are usually involved. Later selections
could be based on the more precise and accurate, but costly, ? analysis
Rotating spin-1 bosons in the lowest Landau level
We present results for the ground states of a system of spin-1 bosons in a
rotating trap. We focus on the dilute, weakly interacting regime, and restrict
the bosons to the quantum states in the lowest Landau level (LLL) in the plane
(disc), sphere or torus geometries. We map out parts of the zero temperature
phase diagram, using both exact quantum ground states and LLL mean field
configurations. For the case of a spin-independent interaction we present exact
quantum ground states at angular momentum . For general values of the
interaction parameters, we present mean field studies of general ground states
at slow rotation and of lattices of vortices and skyrmions at higher rotation
rates. Finally, we discuss quantum Hall liquid states at ultra-high rotation.Comment: 24 pages, 14 figures, RevTe
Three dimensional resonating valence bond liquids and their excitations
We show that there are two types of RVB liquid phases present in
three-dimensional quantum dimer models, corresponding to the deconfining phases
of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite
cubic lattice and is the generalization of the critical point in the square
lattice quantum dimer model found originally by Rokhsar and Kivelson. The
latter exists on the non-bipartite face-centred cubic lattice and generalizes
the RVB phase found earlier by us on the triangular lattice. We discuss the
excitation spectrum and the nature of the ordering in both cases. Both phases
exhibit gapped spinons. In the U(1) case we find a collective, linearly
dispersing, transverse excitation, which is the photon of the low energy
Maxwell Lagrangian and we identify the ordering as quantum order in Wen's
sense. In the Z_2 case all collective excitations are gapped and, as in d=2,
the low energy description of this topologically ordered state is the purely
topological BF action. As a byproduct of this analysis, we unearth a further
gapless excitation, the pi0n, in the square lattice quantum dimer model at its
critical point.Comment: 9 pages, 2 figure
Staggered Currents in the Vortex Core
We study the electronic structure of the vortex core in the cuprates using
the U(1) slave-boson mean-field wavefunctions and their Gutzwiller projection.
We conclude that there exists local orbital antiferromagnetic order in the core
near optimal doping. We compare the results with that of BCS theory and analyze
the spatial dependence of the local tunneling density of states.Comment: 4 pages, 3 figure
Possible Z2 phase and spin-charge separation in electron doped cuprate superconductors
The SU(2) slave-boson mean-field theory for the tt'J model is analyzed. The
role of next-nearest-neighbor hopping t' on the phase-diagram is studied. We
find a pseudogap phase in hole-doped materials (where t'<0). The pseudo-gap
phase is a U(1) spin liquid (the staggered-flux phase) with a U(1) gauge
interaction and no fractionalization. This agrees with experiments on hole
doped samples. The same calculation also indicates that a positive t' favors a
Z2 state with true spin-charge separation. The Z2 state that exists when t' >
0.5J can be a candidate for the pseudo-gap phase of electron-doped cuprates (if
such a phase exists). The experimental situation in electron-doped materials is
also addressed.Comment: 6 pages, 2 figures, RevTeX4. Homepage http://dao.mit.edu/~wen
Detecting fractions of electrons in the high- cuprates
We propose several tests of the idea that the electron is fractionalized in
the underdoped and undoped cuprates. These include the ac Josephson effect, and
tunneling into small superconducting grains in the Coulomb blockade regime. In
both cases, we argue that the results are qualitatively modified from the
conventional ones if the insulating tunnel barrier is fractionalized. These
experiments directly detect the possible existence of the chargon - a charge
spinless boson - in the insulator. The effects described in this paper
provide a means to probing whether the undoped cuprate (despite it's magnetism)
is fractionalized. Thus, the experiments discussed here are complementary to
the flux-trapping experiment we proposed in our earlier work(cond-mat/0006481).Comment: 7 pages, 5 figure
Free expansion of lowest Landau level states of trapped atoms: a wavefunction microscope
We show that for any lowest-Landau-level state of a trapped, rotating,
interacting Bose gas, the particle distribution in coordinate space in a free
expansion (time of flight) experiment is related to that in the trap at the
time it is turned off by a simple rescaling and rotation. When the
lowest-Landau-level approximation is valid, interactions can be neglected
during the expansion, even when they play an essential role in the ground state
when the trap is present. The correlations in the density in a single snapshot
can be used to obtain information about the fluid, such as whether a transition
to a quantum Hall state has occurred.Comment: 5 pages, no figures. v2: discussion of neglect of interactions during
expansion improved, refs adde
Quantum field theory of metallic spin glasses
We introduce an effective field theory for the vicinity of a zero temperature
quantum transition between a metallic spin glass (``spin density glass'') and a
metallic quantum paramagnet. Following a mean field analysis, we perform a
perturbative renormalization-group study and find that the critical properties
are dominated by static disorder-induced fluctuations, and that dynamic
quantum-mechanical effects are dangerously irrelevant. A Gaussian fixed point
is stable for a finite range of couplings for spatial dimensionality ,
but disorder effects always lead to runaway flows to strong coupling for . Scaling hypotheses for a {\em static\/} strong-coupling critical field
theory are proposed. The non-linear susceptibility has an anomalously weak
singularity at such a critical point. Although motivated by a perturbative
study of metallic spin glasses, the scaling hypotheses are more general, and
could apply to other quantum spin glass to paramagnet transitions.Comment: 16 pages, REVTEX 3.0, 2 postscript figures; version contains
reference to related work in cond-mat/950412
- …