568 research outputs found

    Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes

    Full text link
    We study a stochastic lattice gas of particles undergoing asymmetric diffusion in two dimensions. Transitions between a low-density uniform phase and high-density non-uniform phases characterized by localized or extended structure are found. We develop a mean-field theory which relates coarse-grained parameters to microscopic ones. Detailed predictions for finite-size (LL) scaling and density profiles agree excellently with simulations. Unusual large-LL behavior of the transition point parallel to that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after source code, LATeX, to be published as a Phys. Rev. Let

    Absence of hole pairing in a simple t-J model on the Shastry-Sutherland lattice

    Full text link
    The Shastry-Sutherland model is a two-dimensional frustrated spin model whose ground state is a spin gap state. We study this model doped with one and two holes on a 32-site lattice using exact diagonalization. When t'>0, we find that the diagonal dimer order that exists at half-filling are retained at these moderate doping levels. No other order is found to be favored on doping. The holes are strongly repulsive unless the hopping terms are unrealistically small. Therefore, the existence of a spin gap at half-filling does not guarantee hole-pairing in the present case

    Nearest-neighbour Attraction Stabilizes Staggered Currents in the 2D Hubbard Model

    Full text link
    Using a strong-coupling approach, we show that staggered current vorticity does not obtain in the repulsive 2D Hubbard model for large on-site Coulomb interactions, as in the case of the copper oxide superconductors. This trend also persists even when nearest-neighbour repulsions are present. However, staggered flux ordering emerges {\bf only} when attractive nearest-neighbour Coulomb interactions are included. Such ordering opens a gap along the (π,0)(0,π)(\pi,0)-(0,\pi) direction and persists over a reasonable range of doping.Comment: 5 pages with 5 .eps files (Typos in text are corrected

    Staggered Currents in the Vortex Core

    Full text link
    We study the electronic structure of the vortex core in the cuprates using the U(1) slave-boson mean-field wavefunctions and their Gutzwiller projection. We conclude that there exists local orbital antiferromagnetic order in the core near optimal doping. We compare the results with that of BCS theory and analyze the spatial dependence of the local tunneling density of states.Comment: 4 pages, 3 figure

    On Quantum Control via Encoded Dynamical Decoupling

    Full text link
    I revisit the ideas underlying dynamical decoupling methods within the framework of quantum information processing, and examine their potential for direct implementations in terms of encoded rather than physical degrees of freedom. The usefulness of encoded decoupling schemes as a tool for engineering both closed- and open-system encoded evolutions is investigated based on simple examples.Comment: 12 pages, no figures; REVTeX style. This note collects various theoretical considerations complementing/motivated by the experimental demonstration of encoded control by Fortunato et a

    Possible Z2 phase and spin-charge separation in electron doped cuprate superconductors

    Full text link
    The SU(2) slave-boson mean-field theory for the tt'J model is analyzed. The role of next-nearest-neighbor hopping t' on the phase-diagram is studied. We find a pseudogap phase in hole-doped materials (where t'<0). The pseudo-gap phase is a U(1) spin liquid (the staggered-flux phase) with a U(1) gauge interaction and no fractionalization. This agrees with experiments on hole doped samples. The same calculation also indicates that a positive t' favors a Z2 state with true spin-charge separation. The Z2 state that exists when t' > 0.5J can be a candidate for the pseudo-gap phase of electron-doped cuprates (if such a phase exists). The experimental situation in electron-doped materials is also addressed.Comment: 6 pages, 2 figures, RevTeX4. Homepage http://dao.mit.edu/~wen

    Effects of spin-elastic interactions in frustrated Heisenberg antiferromagnets

    Full text link
    The Heisenberg antiferromagnet on a compressible triangular lattice in the spin- wave approximation is considered. It is shown that the interaction between quantum fluctuations and elastic degrees of freedom stabilizes the low symmetric L-phase with a collinear Neel magnetic ordering. Multi-stability in the dependence of the on-site magnetization on an unaxial pressure is found.Comment: Revtex, 4 pages, 2 eps figure

    Optical properties of the pseudogap state in underdoped cuprates

    Full text link
    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome. In addition, no large increase in optical effective mass has been observed, even at dopings as low as 1%. We show that this behavior is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. In this model, the overall reduction in optical conductivity in the approach to the Mott insulating state is caused not by an increase in effective mass, but by a Gutzwiller factor, which describes decreased coherence due to correlations, and by a shrinking of the Fermi surface, which decreases the number of available charge carriers. We also show that in this model, the pseudogap does not modify the low-temperature, low-frequency behavior, though the magnitude of the conductivity is greatly reduced by the Gutzwiller factor. Similarly, the profile of the temperature dependence of the microwave conductivity is largely unchanged in shape, but the Gutzwiller factor is essential in understanding the observed difference in magnitude between ortho-I and -II YBa2_2Cu3_3Oy_y.Comment: 9 pages, 6 figures, submitted to Eur. Phys. J.

    Pyrochlore Photons: The U(1) Spin Liquid in a S=1/2 Three-Dimensional Frustrated Magnet

    Full text link
    We study the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model has a U(1) gauge symmetry generated by certain local rotations about the z-axis in spin space. Upon addition of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-sharing octahedra, we can write down the exact ground state wavefunction with no further approximations. Using the properties of the soluble point we show that these models enter the U(1) spin liquid phase, a novel fractionalized spin liquid with an emergent U(1) gauge structure. This phase supports gapped S^z = 1/2 spinons carrying the U(1) ``electric'' gauge charge, a gapped topological point defect or ``magnetic'' monopole, and a gapless ``photon,'' which in spin language is a gapless, linearly dispersing S^z = 0 collective mode. There are power-law spin correlations with a nontrivial angular dependence, as well as novel U(1) topological order. This state is stable to ALL zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a convenient lattice version of electric-magnetic duality, we develop the effective description of the U(1) spin liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wavefunction. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and for making contact with experiments.Comment: 22 pages, 14 figures. Further minor changes. To appear in Phys. Rev.

    Relation between flux formation and pairing in doped antiferromagnets

    Full text link
    We demonstrate that patterns formed by the current-current correlation function are landmarks which indicate that spin bipolarons form in doped antiferromagnets. Holes which constitute a spin bipolaron reside at opposite ends of a line (string) formed by the defects in the antiferromagnetic spin background. The string is relatively highly mobile, because the motion of a hole at its end does not raise extensively the number of defects, provided that the hole at the other end of the line follows along the same track. Appropriate coherent combinations of string states realize some irreducible representations of the point group C_4v. Creep of strings favors d- and p-wave states. Some more subtle processes decide the symmetry of pairing. The pattern of the current correlation function, that defines the structure of flux, emerges from motion of holes at string ends and coherence factors with which string states appear in the wave function of the bound state. Condensation of bipolarons and phase coherence between them puts to infinity the correlation length of the current correlation function and establishes the flux in the system.Comment: 5 pages, 6 figure
    corecore