59 research outputs found

    Subtraction terms for one-loop amplitudes with one unresolved parton

    Full text link
    Fully differential next-to-next-to-leading order calculations require a method to cancel infrared singularities. In a previous publication, I discussed the general setup for the subtraction method at NNLO. In this paper I give all subtraction terms for electron-positron annihilation associated with one-loop amplitudes with one unresolved parton. These subtraction terms are integrated within dimensional regularization over the unresolved one-particle phase space. The results can be used with all variants of dimensional regularization (conventional dimensional regularization, the 't Hooft-Veltman scheme and the four-dimensional scheme).Comment: 27 page

    Subtraction terms at NNLO

    Full text link
    Perturbative calculations at next-to-next-to-leading order for multi-particle final states require a method to cancel infrared singularities. I discuss the subtraction method at NNLO. As a concrete example I consider the leading-colour contributions to e+ e- --> 2 jets. This is the simplest example which exhibits all essential features. For this example, explicit subtraction terms are given, which approximate the four-parton and three-parton final states in all double and single unresolved limits, such that the subtracted matrix elements can be integrated numerically.Comment: 41 page

    Higher-Order Corrections to Timelike Jets

    Full text link
    We present a simple formalism for the evolution of timelike jets in which tree-level matrix element corrections can be systematically incorporated, up to arbitrary parton multiplicities and over all of phase space, in a way that exponentiates the matching corrections. The scheme is cast as a shower Markov chain which generates one single unweighted event sample, that can be passed to standard hadronization models. Remaining perturbative uncertainties are estimated by providing several alternative weight sets for the same events, at a relatively modest additional overhead. As an explicit example, we consider Z -> q qbar evolution with unpolarized, massless quarks and include several formally subleading improvements as well as matching to tree-level matrix elements through alpha_s^4. The resulting algorithm is implemented in the publicly available VINCIA plugin to the PYTHIA 8 event generator.Comment: 72 pages, 78 figure

    Subtraction Terms for Hadronic Production Processes at Next-to-Next-to-Leading Order

    Full text link
    I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatment of initial state radiation which preserves the production characteristics, such as the rapidity distribution, of the process involved. The method builds upon the Dipole Formalism and, with proper modifications, could be applied to deep inelastic scattering and e^+ e^- annihilation to hadrons.Comment: 4 page

    Multiple Singular Emission in Gauge Theories

    Get PDF
    I derive a class of functions unifying all singular limits for the emission of a given number of soft or collinear gluons in tree-level gauge-theory amplitudes. Each function is a generalization of the single-emission antenna function of ref. [1]. The helicity-summed squares of these functions are thus also generalizations to multiple singular emission of the Catani--Seymour dipole factorization function.Comment: Corrections for final journal version (sign in eqn. (6.11), equation references, typos in indices) & removal of comment about FD

    Next-to-leading order diphoton+2-jet production at the LHC

    Full text link
    We present results from a recent calculation of prompt photon-pair production in association with two jets to next-to-leading order (NLO) at the LHC. The virtual contribution is evaluated using the BlackHat library, a numerical implementation of on-shell methods for one-loop amplitudes, in conjunction with SHERPA. We study four sets of cuts: standard jet cuts, a set of Higgs-related cuts suggested by ATLAS, and corresponding sets which isolate the kinematic region where the process becomes the largest background to Higgs production via vector-boson fusion.Comment: 10 pages, 4 figures, Presented at 11th International Symposium on Radiative Corrections (RADCOR 2013), 22-27 September 2013, Lumley Castle Hotel, Durham, U

    Next-to-Leading Order W + 5-Jet Production at the LHC

    Full text link
    We present next-to-leading order QCD predictions for the total cross section and for a comprehensive set of transverse-momentum distributions in W + 5-jet production at the Large Hadron Collider. We neglect the small contributions from subleading-color virtual terms, top quarks and some terms containing four quark pairs. We also present ratios of total cross sections, and use them to obtain an extrapolation formula to an even larger number of jets. We include the decay of the WW boson into leptons. This is the first such computation with six final-state vector bosons or jets. We use BlackHat together with SHERPA to carry out the computation.Comment: RevTex, 27 pages, 7 figures, v2 minor corrections and corrected reference

    Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit

    Get PDF
    We give a unified description of tree-level multigluon amplitudes in the high-energy limit. We represent the Parke-Taylor amplitudes and the Fadin-Kuraev-Lipatov amplitudes in terms of color configurations that are ordered in rapidity on a two-sided plot. We show that for the helicity configurations they have in common the Parke-Taylor amplitudes and the Fadin-Kuraev-Lipatov amplitudes coincide.Comment: LaTeX, 24 pages (including 4 tar-compressed uuencoded figures

    Left-Handed W Bosons at the LHC

    Get PDF
    The production of W bosons in association with jets is an important background to new physics at the LHC. Events in which the W carries large transverse momentum and decays leptonically lead to large missing energy and are of particular importance. We show that the left-handed nature of the W coupling, combined with valence quark domination at a pp machine, leads to a large left-handed polarization for both W^+ and W^- bosons at large transverse momenta. The polarization fractions are very stable with respect to QCD corrections. The leptonic decay of the W bosons translates the common left-handed polarization into a strong asymmetry in transverse momentum distributions between positrons and electrons, and between neutrinos and anti-neutrinos (missing transverse energy). Such asymmetries may provide an effective experimental handle on separating W + jets from top quark production, which exhibits very little asymmetry due to C invariance, and from various types of new physics.Comment: 32 pages, revtex, 17 figures, 3 tables, v2 minor corrections to ME+PS results, no changes to conclusions, added reference
    • …
    corecore