2,341 research outputs found
Hypomagnesaemia in cystic fibrosis patients referred for lung transplant assessment
AbstractBackgroundHypomagnesaemia in patients with cystic fibrosis (CF) is underrecognized although the true incidence is unknown. Many patients are asymptomatic, although severe deficiency may be associated with muscle weakness, cramps and tetany. Hypomagnesaemia may be a risk factor for post-transplant complications including convulsions, which may be exacerbated by the use of calcineurin inhibitors. The aims of the present study were to describe serum magnesium levels and to investigate the relationship between magnesium levels and age, and renal function measurements in patients with CF referred to a transplant centre for lung transplant assessment.MethodsWe reviewed the data of all 106 CF patients referred for transplant assessment from January 1995 to December 2003. Demographic and biochemical data were recorded and the explanatory variables were subjected to univariate analysis and linear regression analysis.ResultsMean serum magnesium level was 0.75 mmol/L (range 0.46–1.03, normal range 0.74–1.1). 57% of patients had hypomagnesaemia. Serum magnesium levels were not associated with age, serum creatinine or GFR.ConclusionsHypomagnesaemia is a common finding in patients with CF referred for lung transplant assessment. Serum magnesium levels should be monitored in all CF patients being referred for lung transplant irrespective of the results of other renal function tests
A Simple Model of Epidemics with Pathogen Mutation
We study how the interplay between the memory immune response and pathogen
mutation affects epidemic dynamics in two related models. The first explicitly
models pathogen mutation and individual memory immune responses, with contacted
individuals becoming infected only if they are exposed to strains that are
significantly different from other strains in their memory repertoire. The
second model is a reduction of the first to a system of difference equations.
In this case, individuals spend a fixed amount of time in a generalized immune
class. In both models, we observe four fundamentally different types of
behavior, depending on parameters: (1) pathogen extinction due to lack of
contact between individuals, (2) endemic infection (3) periodic epidemic
outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic
due to extremely low minima in the oscillations. We analyze both models to
determine the location of each transition. Our main result is that pathogens in
highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure
Dgsos on DTRS
We perform simulations of a discrete gaussian solid on solid (DGSOS) model on
dynamical graphs, which is equivalent to coupling the model to 2d
quantum gravity, using the cluster algorithms recently developed by Evertz
et.al.for use on fixed lattices. We find evidence from the growth of the
width-squared in the rough phase of KT-like behaviour, which is consistent with
theoretical expectations. We also investigate the cluster statistics, dynamical
critical exponent and lattice properties, and compare these with the dual XY
model.Comment: 9 pages, COLO-HEP-32
Genetic determinants of cellular addiction to DNA polymerase theta
Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy
Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model
Baryon octet magnetic moments when calculated within the chiral quark model,
incorporating the orbital angular momentum as well as the quark sea
contribution through the Cheng-Li mechanism, not only show improvement over the
non relativistic quark model results but also gives a non zero value for the
right hand side of Coleman-Glashow sum rule. When effects due to spin-spin
forces between constituent quarks as well as `mass adjustments' due to
confinement are added, it leads to an excellent fit for the case of p,
\Sigma^+, \Xi^o and violation of Coleman-Glashow sum rule, whereas in almost
all the other cases the results are within 5% of the data.Comment: 5 RevTeX pages, accepted for publication in PRD(Rapid Communication
Vortex ordering in fully-frustrated superconducting systems with dice lattice
The structure and the degenracy of the ground state of a fully-frustrated
XY-model are investigated for the case of a dice lattice geometry.
The results are applicable for the description of Josephson junction arrays
and thin superconducting wire networks in the external magnetic field providing
half-integer number of flux quanta per plaquette. The mechanisms of disordering
of vortex pattern in such systems are briefly discussed.Comment: 10 pages, 3 figure
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
A quantum information processing scheme is proposed with semiconductor
quantum dots located in a high-Q single mode QED cavity. The spin degrees of
freedom of one excess conduction electron of the quantum dots are employed as
qubits. Excitonic states, which can be produced ultrafastly with optical
operation, are used as auxiliary states in the realization of quantum gates. We
show how properly tailored ultrafast laser pulses and Pauli-blocking effects,
can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure
Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory
The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the
combined analysis of several materials science techniques - X-ray diffraction
(XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy
(XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT)
based calculations for the samples under study were performed as well. The
cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation
method exhibits spheroidal-like nanoclusters with well-defined edges assembled
from primary nanoparticles with an average size of 50 nm, whereas the
monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive
pyrolysis has a denser structure compared with natural gadolinia. This phase
also has a structure composed of three-dimensional complex agglomerates without
clear-edged boundaries that are ~21 nm in size plus a cubic phase admixture of
only 2 at. % composed of primary edge-boundary nanoparticles ~15 nm in size.
These atomic features appear in the electronic structure as different defects
([Gd...O-OH] and [Gd...O-O]) and have dissimilar contributions to the
charge-transfer processes among the appropriate electronic states with
ambiguous contributions in the Gd 5p - O 2s core-like levels in the valence
band structures. The origin of [Gd...O-OH] defects found by XPS was
well-supported by PL analysis. The electronic and atomic structures of the
synthesized gadolinias calculated using DFT were compared and discussed on the
basis of the well-known joint OKT-van der Laan model, and good agreement was
established.Comment: 27 pages, 10 figures, accepted in Appl. Surf. Sc
High-energy gamma-ray emission from the inner jet of LS I+61 303: the hadronic contribution revisited
LS I+61 303 has been detected by the Cherenkov telescope MAGIC at very high
energies, presenting a variable flux along the orbital motion with a maximum
clearly separated from the periastron passage. In the light of the new
observational constraints, we revisit the discussion of the production of
high-energy gamma rays from particle interactions in the inner jet of this
system. The hadronic contribution could represent a major fraction of the TeV
emission detected from this source. The spectral energy distribution resulting
from p-p interactions is recalculated. Opacity effects introduced by the photon
fields of the primary star and the stellar decretion disk are shown to be
essential in shaping the high-energy gamma-ray light curve at energies close to
200 GeV. We also present results of Monte Carlo simulations of the
electromagnetic cascades developed very close to the periastron passage. We
conclude that a hadronic microquasar model for the gamma-ray emission in LS I
+61 303 can reproduce the main features of its observed high-energy gamma-ray
flux.Comment: 6 pages. Sligth improvements made. Accepted version by Astrophysics
and Space Scienc
Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid
The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC
- …