433 research outputs found
New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques
This paper describes a novel adaptive battery model based on a remapped variant of the well-known Randles' lead-acid model. Remapping of the model is shown to allow improved modeling capabilities and accurate estimates of dynamic circuit parameters when used with subspace parameter-estimation techniques. The performance of the proposed methodology is demonstrated by application to batteries for an all-electric personal rapid transit vehicle from the Urban Light TRAnsport (ULTRA) program, which is designated for use at Heathrow Airport, U. K. The advantages of the proposed model over the Randles' circuit are demonstrated by comparisons with alternative observer/estimator techniques, such as the basic Utkin observer and the Kalman estimator. These techniques correctly identify and converge on voltages associated with the battery state-of-charge (SoC), despite erroneous initial conditions, thereby overcoming problems attributed to SoC drift (incurred by Coulomb-counting methods due to overcharging or ambient temperature fluctuations). Observation of these voltages, as well as online monitoring of the degradation of the estimated dynamic model parameters, allows battery aging (state-of-health) to also be assessed and, thereby, cell failure to be predicted. Due to the adaptive nature of the proposed algorithms, the techniques are suitable for applications over a wide range of operating environments, including large ambient temperature variations. Moreover, alternative battery topologies may also be accommodated by the automatic adjustment of the underlying state-space models used in both the parameter-estimation and observer/estimator stages
Combining Research and Education: Bioclimatic Zonation along a Canadian Arctic Transect
Scientists and students from five countries combined research and education in an investigation of bioclimatic zonation along a Canadian Arctic transect, from Amund Ringnes Island and Ellesmere Island in the north to the Daring Lake research camp at the southern edge of the tundra in Nunavut. We addressed three important needs in Arctic science: 1) to integrate education and research, 2) to provide field experiences for undergraduates, and 3) to foster international collaboration. We describe five subzones within the Arctic tundra zone. Subzones are defined by the vegetation typical of mesic environments at low elevations and the dominant growth forms of vegetation in these environments. Subzonal boundaries coincide with the northern limits of several species of woody plants with distinct upright or prostrate growth forms, and ultimately with the northern limit of woody plant species. The five subzones, A-E, from north to south, are characterized by dominant growth form: (A) cushion forb, (B) prostrate dwarf shrub, (C) hemiprostrate dwarf shrub, (D) erect dwarf shrub, and (E) low shrub.Des chercheurs et des étudiants de cinq pays ont combiné recherche et éducation dans une étude portant sur la zonation bioclimatique le long d'un transect de l'Arctique canadien, allant de l'île Amund Ringnes et de l'île d'Ellesmere au nord, au camp de recherche du lac Daring situé en bordure sud de la toundra au Nunavut (Canada). On a tenu compte de trois besoins majeurs dans la science de l'Arctique, soit ceux: 1) d'intégrer l'éducation et la recherche; 2) d'offrir aux étudiants de premier cycle des expériences sur le terrain, et 3) de promouvoir la collaboration internationale. On décrit cinq sous-zones à l'intérieur de la zone de toundra de l'Arctique. Les sous-zones sont définies par la végétation typique des milieux à régime d'humidité constant à basse altitude ainsi que par la forme de croissance dominante dans ces habitats. Les limites des sous-zones correspondent aux limites septentrionales de plusieurs espèces de plantes ligneuses ayant des formes de croissance particulières verticales ou procombantes, et en fin de compte à la limite septentrionale des espèces de plantes ligneuses. Les cinq sous-zones (A-E), établies du nord au sud, sont caractérisées par une forme de croissance dominante: A) herbe non graminéenne en coussinet; B) arbuste nain déprimé; C) arbuste nain semi-déprimé; D) arbuste nain dressé, et E) arbuste
The peritoneal tumour microenvironment of high-grade serous ovarian cancer
High-grade serous ovarian cancer (HGSC) disseminates early and extensively throughout the peritoneal space, causing multiple lesions that are a major clinical problem. The aim of this study was to investigate the cellular composition of peritoneal tumour deposits in patient biopsies and their evolution in mouse models using immunohistochemistry, intravital microscopy, confocal microscopy, and 3D modelling. Tumour deposits from the omentum of HGSC patients contained a prominent leukocyte infiltrate of CD3(+) T cells and CD68(+) macrophages, with occasional neutrophils. Alpha-smooth muscle actin(+) (α-SMA(+) ) pericytes and/or fibroblasts surrounded these well-vascularized tumour deposits. Using the murine bowel mesentery as an accessible mouse peritoneal tissue that could be easily imaged, and two different transplantable models, we found multiple microscopic tumour deposits after i.p. injection of malignant cells. Attachment to the peritoneal surface was rapid (6-48 h) with an extensive CD45(+) leukocyte infiltrate visible by 48 h. This infiltrate persisted until end point and in the syngeneic murine ID8 model, it primarily consisted of CD3(+) T lymphocytes and CD68(+) macrophages with α-SMA(+) cells also involved from the earliest stages. A majority of tumour deposits developed above existing mesenteric blood vessels, but in avascular spaces new blood vessels tracked towards the tumour deposits by 2-3 weeks in the IGROV-1 xenografts and 6 weeks in the ID8 syngeneic model; a vigorous convoluted blood supply was established by end point. Inhibition of tumour cell cytokine production by stable expression of shRNA to CXCR4 in IGROV-1 cells did not influence the attachment of cells to the mesentery but delayed neovascularization and reduced tumour deposit size. We conclude that the multiple peritoneal tumour deposits found in HGSC patients can be modelled in the mouse. The techniques described here may be useful for assessing treatments that target the disseminated stage of this disease
Gamma Ray Bursts as Probes of Quantum Gravity
Gamma ray bursts (GRBs) are short and intense pulses of -rays
arriving from random directions in the sky. Several years ago Amelino-Camelia
et al. pointed out that a comparison of time of arrival of photons at different
energies from a GRB could be used to measure (or obtain a limit on) possible
deviations from a constant speed of light at high photons energies. I review
here our current understanding of GRBs and reconsider the possibility of
performing these observations.Comment: Lectures given at the 40th winter school of theretical physics:
Quantum Gravity and Phenomenology, Feb. 2004 Polan
The decay Z -> neutrino antineutrino photon in the Standard Model
A complete study of the one-loop induced decay Z -> neutrino antineutrino
photon is presented within the framework of the Standard Model. The advantages
of using a nonlinear gauge are stressed. We have found that the main
contributions come from the electric dipole and the magnetic dipole transitions
of the Z gauge boson and the neutrino, respectively. We obtain a branching
ratio B=7.16E-10, which is about four orders of magnitude smaller than the
bound recentely obtained by the L3 collaboration and thus it leaves open a
window to search for new physics effects in single-photon decays of the Z
boson.Comment: REVTEX,15 pp, 5 eps figures, Approved for publication in Physical
Review
Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data
Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation
Exact results for hydrogen recombination on dust grain surfaces
The recombination of hydrogen in the interstellar medium, taking place on
surfaces of microscopic dust grains, is an essential process in the evolution
of chemical complexity in interstellar clouds. The H_2 formation process has
been studied theoretically, and in recent years also by laboratory experiments.
The experimental results were analyzed using a rate equation model. The
parameters of the surface, that are relevant to H_2 formation, were obtained
and used in order to calculate the recombination rate under interstellar
conditions. However, it turned out that due to the microscopic size of the dust
grains and the low density of H atoms, the rate equations may not always apply.
A master equation approach that provides a good description of the H_2
formation process was proposed. It takes into account both the discrete nature
of the H atoms and the fluctuations in the number of atoms on a grain. In this
paper we present a comprehensive analysis of the H_2 formation process, under
steady state conditions, using an exact solution of the master equation. This
solution provides an exact result for the hydrogen recombination rate and its
dependence on the flux, the surface temperature and the grain size. The results
are compared with those obtained from the rate equations. The relevant length
scales in the problem are identified and the parameter space is divided into
two domains. One domain, characterized by first order kinetics, exhibits high
efficiency of H_2 formation. In the other domain, characterized by second order
kinetics, the efficiency of H_2 formation is low. In each of these domains we
identify the range of parameters in which, the rate equations do not account
correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
- …