599 research outputs found

    Studies of Pion Production Near Threshold

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    Preparation and Characterization of Homogeneous YBCO Single Crystals with Doping Level near the SC-AFM Boundary

    Full text link
    High-purity and homogeneous YBa2Cu3Oy single crystals with carrier doping level near the AFM-SC boundary have been obtained in the oxygen content range between y = 6.340 and 6.370. The crystals are ortho-II phase at room temperature and undergo the orthorhombic to tetragonal transition at about 140_Degree_C. They show sharp superconducting transitions, with Tc between 4 and 20 K. Tc changes by 0.8 K when the oxygen content y is changed by 0.001, and is also sensitive to annealing conditions near room temperature, due to the dependence of doping on oxygen ordering correlation lengths. Crystals with oxygen content y lower than 6.345 are non-superconducting.Comment: 6 page

    Staggered Currents in the Vortex Core

    Full text link
    We study the electronic structure of the vortex core in the cuprates using the U(1) slave-boson mean-field wavefunctions and their Gutzwiller projection. We conclude that there exists local orbital antiferromagnetic order in the core near optimal doping. We compare the results with that of BCS theory and analyze the spatial dependence of the local tunneling density of states.Comment: 4 pages, 3 figure

    Models for Enhanced Absorption in Inhomogeneous Superconductors

    Full text link
    We discuss the low-frequency absorption arising from quenched inhomogeneity in the superfluid density rho_s of a model superconductor. Such inhomogeneities may arise in a high-T_c superconductor from a wide variety of sources, including quenched random disorder and static charge density waves such as stripes. Using standard classical methods for treating randomly inhomogeneous media, we show that both mechanisms produce additional absorption at finite frequencies. For a two-fluid model with weak mean-square fluctuations <(d rho_s)^2 > in rho_s and a frequency-independent quasiparticle conductivity, the extra absorption has oscillator strength proportional to the quantity <(d rho_s)^2>/rho_s, as observed in some experiments. Similar behavior is found in a two-fluid model with anticorrelated fluctuations in the superfluid and normal fluid densities. The extra absorption typically occurs as a Lorentzian centered at zero frequency. We present simple model calculations for this extra absorption under conditions of both weak and strong fluctuations. The relation between our results and other model calculations is briefly discussed

    Line shapes of dynamical correlation functions in Heisenberg chains

    Full text link
    We calculate line shapes of correlation functions by use of complete diagonalization data of finite chains and analytical implications from conformal field theory, density of states, and Bethe ansatz. The numerical data have different finite size accuracy in case of the imaginary and real parts in the frequency and time representations of spin-correlation functions, respectively. The low temperature, conformally invariant regime crosses over at T0.7JT^*\approx 0.7J to a diffusive regime that in turn connects continuously to the high temperature, interacting fermion regime. The first moment sum rule is determined.Comment: 13 pages REVTEX, 18 figure

    DDW Order and its Role in the Phase Diagram of Extended Hubbard Models

    Full text link
    We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are extended Hubbard models with nearest neighbor interaction and correlated hopping. The underdoped region of the phase diagram features dx2y2d_{{x^2}-{y^2}} density-wave (DDW) order. In a certain regime of temperature and doping, DDW order coexists with antiferromagnetic (AF) order. For larger doping, it coexists with dx2y2d_{{x^2}-{y^2}} superconductivity (DSC). While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the coupling constants, drastically different phase diagrams are obtained. We comment on implications for the cuprates.Comment: 7 pages, 3 figure

    Relation between flux formation and pairing in doped antiferromagnets

    Full text link
    We demonstrate that patterns formed by the current-current correlation function are landmarks which indicate that spin bipolarons form in doped antiferromagnets. Holes which constitute a spin bipolaron reside at opposite ends of a line (string) formed by the defects in the antiferromagnetic spin background. The string is relatively highly mobile, because the motion of a hole at its end does not raise extensively the number of defects, provided that the hole at the other end of the line follows along the same track. Appropriate coherent combinations of string states realize some irreducible representations of the point group C_4v. Creep of strings favors d- and p-wave states. Some more subtle processes decide the symmetry of pairing. The pattern of the current correlation function, that defines the structure of flux, emerges from motion of holes at string ends and coherence factors with which string states appear in the wave function of the bound state. Condensation of bipolarons and phase coherence between them puts to infinity the correlation length of the current correlation function and establishes the flux in the system.Comment: 5 pages, 6 figure

    Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals

    Full text link
    Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y in the cuprate superconductor YBa2_2Cu3_3O6+y_{\rm 6+y} is used as a novel technique for measuring the absolute value of the low temperature magnetic penetration depth λ(T0)\lambda(T\to 0). The Gd ESR spectrum of samples with 1\approx 1% substitution was obtained with a broadband microwave technique that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR spectrum is determined by the crystal field that lifts the level degeneracy of the spin 7/2 Gd3+^{3+} ion and details of this spectrum provide information concerning oxygen ordering in the samples. The magnetic penetration depth is obtained by relating the number of Gd ions exposed to the microwave magnetic field to the frequency-integrated intensity of the observed ESR transitions. This technique has allowed us to determine precise values of λ\lambda for screening currents flowing in the three crystallographic orientations (a^\hat a, b^\hat b and c^\hat c) in samples of Gdx_{\rm x}Y1x_{\rm 1-x}Ba2_2Cu3_3O6+y_{6+{\rm y}} of three different oxygen contents y=0.993{\rm y}=0.993 (Tc=89T_c = 89 K), y=0.77{\rm y}=0.77 (Tc=75T_c=75 K) and y=0.52{\rm y}=0.52 (Tc=56T_c=56 K). The in-plane values are found to depart substantially from the widely reported relation Tc1/λ2T_c\propto 1/\lambda^2.Comment: 14 pages, 12 figures; version to appear in PR

    Magnetic Order in YBa2_2Cu3_3O6+x_{6+x} Superconductors

    Get PDF
    Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa2_2Cu3_3O6+x_{6+x} superconductors. Most of the measurements were made on a high quality crystal of YBa2_2Cu3_3O6.6_{6.6}. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the aa-bb plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the dd-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa2_2Cu3_3O7_{7} show no signal while a small magnetic intensity is found in YBa2_2Cu3_3O6.45_{6.45} that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.Comment: 11 pages with 10 figure
    corecore