37 research outputs found

    The Orchid Velamen: A model system for studying patterned secondary cell wall development?

    Get PDF
    Understanding the mechanisms through which plants generate secondary cell walls is of more than academic interest: the physical properties of plant-derived materials, including timber and textiles, all depend upon secondary wall cellulose organization. Processes controlling cellulose in the secondary cell wall and their reliance on microtubules have been documented in recent decades, but this understanding is complicated, as secondary walls normally form in the plant’s interior where live cell imaging is more difficult. We investigated secondary wall formation in the orchid velamen, a multicellular epidermal layer found around orchid roots that consists of dead cells with lignified secondary cell walls. The patterns of cell wall ridges that form within the velamen vary between different orchid species, but immunolabelling demonstrated that wall deposition is controlled by microtubules. As these patterning events occur at the outer surface of the root, and as orchids are adaptable for tissue culture and genetic manipulation, we conclude that the orchid root velamen may indeed be a suitable model system for studying the organization of the plant cell wall. Notably, roots of the commonly grown orchid Laelia anceps appear ideally suited for developing this research

    Asymmetric wall ingrowth deposition in Arabidopsis phloem parenchyma transfer cells is tightly associated with sieve elements

    Get PDF
    In Arabidopsis, polarized deposition of wall ingrowths in phloem parenchyma (PP) transfer cells (TCs) occurs adjacent to cells of the sieve element/companion cell (SE/CC) complex. However, the spatial relationships between these different cell types in minor veins, where phloem loading occurs, are poorly understood. PP TC development and wall ingrowth localization were compared with those of other phloem cells in leaves of Col-0 and the transgenic lines AtSUC2::AtSTP9-GFP (green fluorescent protein) and AtSWEET11::AtSWEET11-GFP that identify CCs and PP cells, respectively. The development of PP TCs in minor veins, indicated by deposition of wall ingrowths, proceeded basipetally in leaves. However, not all PP cells develop wall ingrowths, and higher levels of deposition occur in abaxial- compared with adaxial-positioned PP TCs. Furthermore, the deposition of wall ingrowths was exclusively initiated on and preferentially covered the PP TC/SE interface, rather than the PP TC/CC interface, and only occurred in PP cells that were adjacent to SEs. Collectively, these results demonstrate a tight association between SEs and wall ingrowth deposition in PP TCs and suggest the existence of two subtypes of PP cells in leaf minor veins. Compared with PP cells, PP TCs showed more abundant accumulation of AtSWEET11–GFP, indicating functional differences in phloem loading between PP and PP TCs

    Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Plant Physiology and Biochemistry, doi:10.1016/j.plaphy.2006.03.003.The endoplasmic reticulum (ER) of plant cells undergoes a drastic reorganization during cell division. In tobacco NT-1 cells that stably express a GFP construct targeted to the ER, we have mapped the reorganization of ER that occurs during mitosis and cytokinesis with confocal laser scanning microscopy. During division, the ER and nuclear envelope do not vesiculate. Instead, tubules of ER accumulate around the chromosomes after the nuclear envelope breaks down, with these tubules aligning parallel to the microtubules of the mitotic spindle. In cytokinesis, the phragmoplast is particularly rich in ER, and the transnuclear channels and invaginations present in many interphase cells appear to develop from ER tubules trapped in the developing phragmoplast. Drug studies, using oryzalin and latrunculin to disrupt the microtubules and actin microfilaments respectively, demonstrate that during division, the arrangement of ER is controlled by microtubules and not by actin, which is the reverse of the situation in interphase cells.Funding for this project included NASA grant # NAGW-4984 to the North Carolina NSCORT (NASA Specialized Center of Research and Training) (SLG, DAC, NSA), NSF REU Site Grant #0243930 (NSA), a Sigma Xi Grant-in-Aid Award (SLG), and Australian Research Council Discovery Grant no. DP0208806 (DAC)

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Genome Sequence of Banana Streak MY Virus from the Pacific Ocean Island of Tonga

    Get PDF
    Banana streak disease is caused by a variety of banana-infecting badnaviruses. A genome of the episomal form of a banana streak MY virus was recovered from an infected banana plant sampled on Vava’u Island, Tonga, and shares >98% pairwise identity with the six other genomes available in public databases

    Review: More than sweet: New insights into the biology of phloem parenchyma transfer cells in Arabidopsis

    No full text
    Transfer cells (TCs) develop extensive wall ingrowths to facilitate enhanced rates of membrane transport. In Arabidopsis, TCs trans-differentiate from phloem parenchyma (PP) cells abutting the sieve element/companion cell complex in minor veins of foliar tissues and, based on anatomy and expression of SWEET sucrose uniporters, are assumed to play pivotal roles in phloem loading. While wall ingrowth deposition in PP TCs is a dynamic process responding to abiotic stresses such as high light and cold, the transcriptional control of PP TC development, including deposition of the wall ingrowths themselves, is not understood. PP TC development is a trait of vegetative phase change, potentially linking wall ingrowth deposition with floral induction. Transcript profiling by RNA-seq identified NAC056 and NAC018 (NARS1 and NARS2) as putative regulators of wall ingrowth deposition, while recent single cell RNA-seq analysis of leaf vasculature identified PP-specific expression of NAC056. Numerous membrane transporters, particularly of the UmamiT family of amino acid efflux carriers, were also identified. Collectively, these findings, and the recent discovery that wall ingrowth deposition is regulated by sucrose-dependent loading activity of these cells, provide new insights into the biology of PP TCs and their importance to phloem loading in Arabidopsis, establishing these cells as a key transport hub for phloem loading

    Induction of compression wood inhibits development of spiral grain in radiata pine

    No full text
    Spiral grain refers to the helical patterns formed by the wood grain in the trunks of many tree species. In most gymnosperms, grain near the pith is vertical but wood formed after several years of growth has a slight to pronounced left-handed twist. Grain changes presumably involve the slow rotation of cells within the vascular cambium, but the mechanisms that allow this reorientation to occur remain unclear. Understanding this process is, however, important as the presence of strong spiral grain within the corewood of gymnosperms is a major wood quality issue devaluing cut timber. In this study, we measured wood grain in stems of Pinus radiata (radiata pine) saplings through reconstructions of resin canals that follow the grain, visualised by serial sectioning and scanning with circularly polarised light, and through X-ray computed microtomography (μCT) and image analysis in ImageJ. Vertical trees retained a symmetrical grain pattern that was weakly right-handed near the pith, but which became progressively more left-handed during the first eight months of growth. In tilted trees, however, the development of left-handed grain was inhibited by the formation of compression wood on the lower side of the tree whereas the wood on the upper side of the tree developed increasingly more left-handed grain as in the vertical controls. These results demonstrate that a previously unidentified link exists between compression wood formation and the inhibition of grain development

    Phi thickenings in Brassica oleracea roots are induced by osmotic stress and mechanical effects, both involving jasmonic acid

    No full text
    Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified

    The formation of interlocked grain in African mahogany (Khaya spp.) analysed by X-ray computed microtomography

    No full text
    Interlocked grain occurs when the orientation of xylem fibres oscillates, alternating between left- and right-handed spirals in successive wood layers. The cellular mechanisms giving rise to interlocked grain, thought to involve the slow rotation of fusiform initials within the vascular cambium, remain unclear. We suggest that observations of wood structure at the cellular level, but over large areas, might reveal these mechanisms. We assayed timber from several commercially important tropical angiosperms from the genus Khaya (African mahogany) that exhibit interlocked grain using X-ray computed microtomography followed by orthogonal slicing and image processing in ImageJ. Reconstructed tangential longitudinal sections were processed with the ImageJ DIRECTIONALITY plug-in to directly measure fibre orientation and showed grain deviations of more than 10° from vertical in both left- and right-handed directions. Grain changed at locally constant rates, separated by locations where the direction of grain change sharply reversed. Image thresholding and segmentation conducted on reconstructed cross sections allowed the identification of vessels and measurement of their location, with vessel orientations then calculated in Matlab and, independently, in recalculated tangential longitudinal sections with the DIRECTIONALITY plug-in. Vessel orientations varied more than fibre orientations, and on average deviated further from vertical than fibres at the locations where the direction of grain change reversed. Moreover, the reversal location for vessels was shifted ~400 μm towards the pith compared with the fibres, despite both cell types arising from the same fusiform initials within the vascular cambium. We propose a simple model to explain these distinct grain patterns. Were an auxin signal to control both the reorientation of cambial initials, as well as coordinating the end-on-end differentiation and linkage of xylem vessel elements, then it would be possible for fibres and vessels to run at subtly different angles, and to show different grain reversal locations
    corecore