22,898 research outputs found

    Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

    Get PDF
    We propose a scheme to implement a single-mode quantum filter, which selectively eliminates the one-photon state in a quantum state α0>+β1>+γ2>\alpha|0>+\beta|1>+\gamma|2>. The vacuum state and the two photon state are transmitted without any change. This scheme requires single-photon sources, linear optical elements and photon detectors. Furthermore we demonstrate, how this filter can be used to realize a two-qubit projective measurement and to generate multi-photon polarization entangled states.Comment: revision submitted to PR

    Exact analytical solution of average path length for Apollonian networks

    Full text link
    The exact formula for the average path length of Apollonian networks is found. With the help of recursion relations derived from the self-similar structure, we obtain the exact solution of average path length, dˉt\bar{d}_t, for Apollonian networks. In contrast to the well-known numerical result dˉt(lnNt)3/4\bar{d}_t \propto (\ln N_t)^{3/4} [Phys. Rev. Lett. \textbf{94}, 018702 (2005)], our rigorous solution shows that the average path length grows logarithmically as dˉtlnNt\bar{d}_t \propto \ln N_t in the infinite limit of network size NtN_t. The extensive numerical calculations completely agree with our closed-form solution.Comment: 8 pages, 4 figure

    The Three-body Force and the Tetraquark Interpretation of Light Scalar Mesons

    Full text link
    We study the possible tetraquark interpretation of light scalar meson states a0(980)a_0(980), f0(980)f_0(980), κ\kappa, σ\sigma within the framework of the non-relativistic potential model. The wave functions of tetraquark states are obtained in a space spanned by multiple Gaussian functions. We find that the mass spectra of the light scalar mesons can be well accommodated in the tetraquark picture if we introduce a three-body quark interaction in the quark model. Using the obtained multiple Gaussian wave functions, the decay constants of tetraquarks are also calculated within the ``fall apart'' mechanism

    Vector magnetic field sensing by single nitrogen vacancy center in diamond

    Full text link
    In this Letter, we proposed and experimentally demonstrated a method to detect vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information of the vector magnetic field can be achieved with such a method. This vector magnetic field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure

    Scheme for the generation of an entangled four-photon W-state

    Full text link
    We present a scheme to produce an entangled four-photon W-state by using linear optical elements. The symmetrical setup of linear optical elements consists of four beam splitters, four polarization beam splitters and four mirrors. A photon EPR-pair and two single photons are required as the input modes. The projection on the W-state can be made by a four-photon coincidence measurement. Further, we show that by means of a horizontally oriented polarizer in front of one detector the W-state of three photons can be generated.Comment: titile is changed, to appear in PR

    On the structure of the scalar mesons f0(975)f_0(975) and a0(980)a_0(980)

    Full text link
    We investigate the structure of the scalar mesons f0(975)f_0(975) and a0(980)a_0(980) within realistic meson-exchange models of the ππ\pi\pi and πη\pi\eta interactions. Starting from a modified version of the J\"ulich model for ππ\pi\pi scattering we perform an analysis of the pole structure of the resulting scattering amplitude and find, in contrast to existing models, a somewhat large mass for the f0(975)f_0(975) (mf0=1015m_{f_0}=1015 MeV, Γf0=30\Gamma_{f_0}=30 MeV). It is shown that our model provides a description of J/ψϕππ/ϕKKJ/\psi\rightarrow\phi\pi\pi/\phi KK data comparable in quality with those of alternative models. Furthermore, the formalism developed for the ππ\pi\pi system is consistently extended to the πη\pi\eta interaction leading to a description of the a0(980)a_0(980) as a dynamically generated threshold effect (which is therefore neither a conventional qqq\overline{q} state nor a KKK\overline{K} bound state). Exploring the corresponding pole position the a0(980)a_0(980) is found to be rather broad (ma0=991m_{a_0}=991 MeV, Γa0=202\Gamma_{a_0}=202 MeV). The experimentally observed smaller width results from the influence of the nearby KKK\overline{K} threshold on this pole.Comment: 25 pages, 15 Postscript figure
    corecore