41,661 research outputs found

    Confinement made simple in the Coulomb gauge

    Full text link
    In Gribov's scenario in Coulomb gauge, confinement of color charge is due to a long-range instantaneous color-Coulomb potential V(R). This may be determined numerically from the instantaneous part of the gluon propagator D_{44, inst} = V(R) \delta(t). Confinement of gluons is reflected in the vanishing at k = 0 of the equal-time three-dimensionally transverse would-be physical gluon propagator D^{tr}(k). We present exact analytic results on D_{44} and D^{tr} (which have also been investigated numerically, A. Cucchieri, T. Mendes, and D. Zwanziger, this conference), in particular the vanishing of D^{tr}(k) at k = 0, and the determination of the running coupling constant from x_0 g^2(k) = k^2 D_{44, inst}, where x_0 = 12N/(11N-2N_f).Comment: 3 pages; talk presented by D. Zwanziger at Lattice2001(confinement), Berlin, August 20-24, 200

    Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

    Get PDF
    We present numerical results in SU(2) lattice gauge theory for the space-space and time-time components of the gluon propagator at equal time in the minimal Coulomb gauge. It is found that the equal-time would-be physical 3-dimensionally transverse gluon propagator Dtr(k⃗)D^{tr}(\vec{k}) vanishes at k⃗=0\vec{k} = 0 when extrapolated to infinite lattice volume, whereas the instantaneous color-Coulomb potential D44(k⃗)D_{44}(\vec{k}) is strongly enhanced at k⃗=0\vec{k} = 0. This has a natural interpretation in a confinement scenario in which the would-be physical gluons leave the physical spectrum while the long-range Coulomb force confines color. Gribov's formula Dtr(k⃗)=(∣k⃗∣/2)[(k⃗2)2+M4]1/2D^{tr}(\vec{k}) = (|\vec{k}|/2)[(\vec{k}^2)^2 + M^4]^{1/2} provides an excellent fit to our data for the 3-dimensionally transverse equal-time gluon propagator Dtr(k⃗)D^{tr}(\vec{k}) for relevant values of k⃗\vec{k}.Comment: 23 pages, 12 figures, TeX file. Minor modifications, incorporating referee's suggestion

    Infrared-suppressed gluon propagator in 4d Yang-Mills theory in a Landau-like gauge

    Get PDF
    The infrared behavior of the gluon propagator is directly related to confinement in QCD. Indeed, the Gribov-Zwanziger scenario of confinement predicts an infrared vanishing (transverse) gluon propagator in Landau-like gauges, implying violation of reflection positivity and gluon confinement. Finite-volume effects make it very difficult to observe (in the minimal Landau gauge) an infrared suppressed gluon propagator in lattice simulations of the four-dimensional case. Here we report results for the SU(2) gluon propagator in a gauge that interpolates between the minimal Landau gauge (for gauge parameter lambda equal to 1) and the minimal Coulomb gauge (corresponding to lambda = 0). For small values of lambda we find that the spatially-transverse gluon propagator D^tr(0,|\vec p|), considered as a function of the spatial momenta |\vec p|, is clearly infrared suppressed. This result is in agreement with the Gribov-Zwanziger scenario and with previous numerical results in the minimal Coulomb gauge. We also discuss the nature of the limit lambda -> 0 (complete Coulomb gauge) and its relation to the standard Coulomb gauge (lambda = 0). Our findings are corroborated by similar results in the three-dimensional case, where the infrared suppression is observed for all considered values of lambda.Comment: 5 pages, 2 figures, one figure with additional results and extended discussion of some aspects of the results added and some minor clarifications. In v3: Various small changes and addition

    Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips

    Full text link
    We determine the general structure of the partition function of the qq-state Potts model in an external magnetic field, Z(G,q,v,w)Z(G,q,v,w) for arbitrary qq, temperature variable vv, and magnetic field variable ww, on cyclic, M\"obius, and free strip graphs GG of the square (sq), triangular (tri), and honeycomb (hc) lattices with width LyL_y and arbitrarily great length LxL_x. For the cyclic case we prove that the partition function has the form Z(Λ,Ly×Lx,q,v,w)=∑d=0Lyc~(d)Tr[(TZ,Λ,Ly,d)m]Z(\Lambda,L_y \times L_x,q,v,w)=\sum_{d=0}^{L_y} \tilde c^{(d)} Tr[(T_{Z,\Lambda,L_y,d})^m], where Λ\Lambda denotes the lattice type, c~(d)\tilde c^{(d)} are specified polynomials of degree dd in qq, TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} is the corresponding transfer matrix, and m=Lxm=L_x (Lx/2L_x/2) for Λ=sq,tri(hc)\Lambda=sq, tri (hc), respectively. An analogous formula is given for M\"obius strips, while only TZ,Λ,Ly,d=0T_{Z,\Lambda,L_y,d=0} appears for free strips. We exhibit a method for calculating TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} for arbitrary LyL_y and give illustrative examples. Explicit results for arbitrary LyL_y are presented for TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} with d=Lyd=L_y and d=Ly−1d=L_y-1. We find very simple formulas for the determinant det(TZ,Λ,Ly,d)det(T_{Z,\Lambda,L_y,d}). We also give results for self-dual cyclic strips of the square lattice.Comment: Reference added to a relevant paper by F. Y. W

    The Tensor Current Divergence Equation in U(1) Gauge Theories is Free of Anomalies

    Full text link
    The possible anomaly of the tensor current divergence equation in U(1) gauge theories is calculated by means of perturbative method. It is found that the tensor current divergence equation is free of anomalies.Comment: Revtex4, 7 pages, 2 figure
    • …
    corecore