1,036 research outputs found
Superconductivity induced by ruthenium substitution in an iron arsenide: investigation of SrFe2-xRuxAs2 (0 <= x <= 2)
The magnetism in SrFe2As2 can be suppressed by electron doping through a
small substitution of Fe by Co or Ni, giving way to superconductivity. We
demonstrate that a massive substitution of Fe by isovalent ruthenium similarly
suppresses the magnetic ordering in SrFe2-xRuxAs2 and leads to bulk
superconductivity for 0.6 <= x <= 0.8. Magnetization, electrical resistivity,
and specific heat data show Tc up to approx 20K. Detailed structural
investigations reveal a strong decrease of the lattice parameter ratio c/a with
increasing x. DFT band structure calculations are in line with the observation
that the magnetic order in SrFe2-xRuxAs2 is only destabilized for large x.Comment: 6 pages, 5 figures, extended and revised versio
Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance
Mesoscopic particles immersed in a critical fluid experience long-range
Casimir forces due to critical fluctuations. Using field theoretical methods,
we investigate the Casimir interaction between two spherical particles and
between a single particle and a planar boundary of the fluid. We exploit the
conformal symmetry at the critical point to map both cases onto a highly
symmetric geometry where the fluid is bounded by two concentric spheres with
radii R_- and R_+. In this geometry the singular part of the free energy F only
depends upon the ratio R_-/R_+, and the stress tensor, which we use to
calculate F, has a particularly simple form. Different boundary conditions
(surface universality classes) are considered, which either break or preserve
the order-parameter symmetry. We also consider profiles of thermodynamic
densities in the presence of two spheres. Explicit results are presented for an
ordinary critical point to leading order in epsilon=4-d and, in the case of
preserved symmetry, for the Gaussian model in arbitrary spatial dimension d.
Fundamental short-distance properties, such as profile behavior near a surface
or the behavior if a sphere has a `small' radius, are discussed and verified.
The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B
51, 13717 (1995
Surface Critical Behavior of Binary Alloys and Antiferromagnets: Dependence of the Universality Class on Surface Orientation
The surface critical behavior of semi-infinite
(a) binary alloys with a continuous order-disorder transition and
(b) Ising antiferromagnets in the presence of a magnetic field is considered.
In contrast to ferromagnets, the surface universality class of these systems
depends on the orientation of the surface with respect to the crystal axes.
There is ordinary and extraordinary surface critical behavior for orientations
that preserve and break the two-sublattice symmetry, respectively. This is
confirmed by transfer-matrix calculations for the two-dimensional
antiferromagnet and other evidence.Comment: Final version that appeared in PRL, some minor stylistic changes and
one corrected formula; 4 pp., twocolumn, REVTeX, 3 eps fig
Analytic Solution of Emden-Fowler Equation and Critical Adsorption in Spherical Geometry
In the framework of mean-field theory the equation for the order-parameter
profile in a spherically-symmetric geometry at the bulk critical point reduces
to an Emden-Fowler problem. We obtain analytic solutions for the surface
universality class of extraordinary transitions in for a spherical shell,
which may serve as a starting point for a pertubative calculation. It is
demonstrated that the solution correctly reproduces the Fisher-de Gennes effect
in the limit of the parallel-plate geometry.Comment: (to be published in Z. Phys. B), 7 pages, 1 figure, uuencoded
postscript file, 8-9
Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future
This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud
with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud
this paper. As this research is guided by a real problem in industry, the flowshop\ud
considered has considerable flexibility, which stimulated the development of an\ud
innovative methodology for this research. Each stage of the flowshop currently has\ud
one or several identical machines. However, the manufacturing company is planning\ud
to introduce additional machines with different capabilities in different stages in the\ud
near future. Thus, the algorithm proposed and developed for the problem is not only\ud
capable of solving the current flow line configuration but also the potential new\ud
configurations that may result in the future. A meta-heuristic search algorithm based\ud
on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud
different initial solution finding mechanisms are proposed. A carefully planned\ud
nested split-plot design is performed to test the significance of different factors and\ud
their impact on the performance of the different algorithms. To the best of our\ud
knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud
problem with the concern for future developments
An Unrecognized Source of PCB Contamination in Schools and Other Buildings
An investigation of 24 buildings in the Greater Boston Area revealed that one-third (8 of 24) contained caulking materials with polychlorinated biphenyl (PCB) content exceeding 50 ppm by weight, which is the U.S. Environmental Protection Agency (U.S. EPA) specified limit above which this material is considered to be PCB bulk product waste. These buildings included schools and other public buildings. In a university building where similar levels of PCB were found in caulking material, PCB levels in indoor air ranged from 111 to 393 ng/m(3); and in dust taken from the building ventilation system, < 1 ppm to 81 ppm. In this building, the U.S. EPA mandated requirements for the removal and disposal of the PCB bulk product waste as well as for confirmatory sampling to ensure that the interior and exterior of the building were decontaminated. Although U.S. EPA regulations under the Toxic Substances Control Act stipulate procedures by which PCB-contaminated materials must be handled and disposed, the regulations apparently do not require that materials such as caulking be tested to determine its PCB content. This limited investigation strongly suggests that were this testing done, many buildings would be found to contain high levels of PCBs in the building materials and potentially in the building environment. The presence of PCBs in schools is of particular concern given evidence suggesting that PCBs are developmental toxins
First order phase transition in a 1+1-dimensional nonequilibrium wetting process
A model for nonequilibrium wetting in 1+1 dimensions is introduced. It
comprises adsorption and desorption processes with a dynamics which generically
does not obey detailed balance. Depending on the rates of the dynamical
processes the wetting transition is either of first or second order. It is
found that the wet (unbound) and the non-wet (pinned) states coexist and are
both thermodynamically stable in a domain of the dynamical parameters which
define the model. This is in contrast with equilibrium transitions where
coexistence of thermodynamically stable states takes place only on the
transition line.Comment: 4 pages, RevTeX, including 4 eps figure
Order parameter for two-dimensional critical systems with boundaries
Conformal transformations can be used to obtain the order parameter for
two-dimensional systems at criticality in finite geometries with fixed boundary
conditions on a connected boundary. To the known examples of this class (such
as the disk and the infinite strip) we contribute the case of a rectangle. We
show that the order parameter profile for simply connected boundaries can be
represented as a universal function (independent of the criticality model)
raised to the power eta/2. The universal function can be determined from the
Gaussian model or equivalently a problem in two-dimensional electrostatics. We
show that fitting the order parameter profile to the theoretical form gives an
accurate route to the determination of eta. We perform numerical simulations
for the Ising model and percolation for comparison with these analytic
predictions, and apply this approach to the study of the planar rotor model.Comment: 10 pages, 14 figures. Revisions: Removed many typos, improved
presentation of most of the figure
- âŠ