32 research outputs found

    RX J0720.4--3125 as a Possible Example of the Magnetic Field Decay of Neutron Stars

    Get PDF
    We studied possible evolution of the rotational period and the magnetic field of the X-ray source RX J0720.4-3125 assuming this source to be an isolated neutron star accreting interstellar medium. Magnetic field of the source is estimated to be 106−10910^6 - 10^9 G, and it is difficult to explain observed rotational period 8.38 s without invoking hypothesis of the magnetic field decay. We used the model of ohmic decay of the crustal magnetic field. The estimates of accretion rate (10−14−10−16M⊙/yr10^{-14} - 10^{-16} M_\odot/yr), velocity of the source relative to interstellar medium (10−5010 - 50 km/s), neutron star age (2⋅109−10102\cdot 10^9 - 10^{10} yrs) are obtained.Comment: 12 pages (LATEX), 2 PostScript figures. Also available at http://xray.sai.msu.su/~polar/ (with the Russian variant of the article

    ROSAT X-ray sources and exponential field decay in isolated neutron stars

    Get PDF
    In this paper we semianalyticaly evaluate influence of the exponential decay of magnetic field on the fate of isolated neutron stars. The fact of ROSAT observations of several X-ray sources, which can be accreting old isolated neutron stars gives us an opportunity to put some limits on the parameters of the exponential decay. We argue, that, if most part of neutron stars have approximately the same decay and initial parameters, then the combinations of the bottom magnetic momentum, μb\mu_b, in the range ∼1028−1029.5Gcm3\sim 10^{28}-10^{29.5} {\rm G} {\rm cm}^3 and characteristic time scale, tdt_d, in the range ∼107−108yrs\sim 10^7-10^8 {\rm yrs} for standard initial magnetic momentum, μ0=1030Gcm3\mu_0=10^{30} {\rm G} {\rm cm}^3, can be excluded, because for that sets of parameters neutron stars never come to the stage when accretion of the interstellar medium on their surfaces is possible even for low velocity of neutron stars and relatively high density of the interstellar medium. The region of excluded parameters increases with μ0\mu_0 decreasing.Comment: 5 pages, 4 PostScript figures (uses A&A style

    Constrains on parameters of magnetic field decay for accreting isolated neutron stars

    Get PDF
    The influence of exponential magnetic field decay (MFD) on the spin evolution of isolated neutron stars is studied. The ROSAT observations of several X-ray sources, which can be accreting old isolated neutron stars, are used to constrain the exponential and power-law decay parameters. We show that for the exponential decay the ranges of minimum value of magnetic moment, μb\mu_b, and the characteristic decay time, tdt_d, ∼1029.5≥μb≥1028Gcm3\sim 10^{29.5}\ge \mu_b \ge 10^{28} {\rm G} {\rm cm}^3, ∼108≥td≥107yrs\sim 10^8\ge t_d \ge 10^7 {\rm yrs} are excluded assuming the standard initial magnetic moment, μ0=1030Gcm3\mu_0=10^{30} {\rm G} {\rm cm}^3. For these parameters, neutron stars would never reach the stage of accretion from the interstellar medium even for a low space velocity of the stars and a high density of the ambient plasma. The range of excluded parameters increases for lower values of μ0\mu_0. We also show, that, contrary to exponential MFD, no significant restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. Isolated neutron stars with constant magnetic fields and initial values of them less than μ0∼1029Gcm3\mu_0 \sim 10^{29} {\rm G} {\rm cm}^3 never come to the stage of accretion. We briefly discuss the fate of old magnetars with and without MFD, and describe parameters of old accreting magnetars.Comment: 18 pages, 6 PostScript figures, to be published in the Proceedings of the XXVIII ITEP Winter Schoo

    Evolution of isolated neutron stars in globular clusters: number of Accretors

    Full text link
    With a simple model from the point of view of population synthesis we try to verify an interesting suggestion made by Pfahl & Rappaport (2001) that dim sources in globular clusters (GCs) can be isolated accreting neutron stars (NSs). Simple estimates show, that we can expect about 0.5-1 accreting isolated NS per typical GC with M=105M⊙M=10^5 M_{\odot} in correspondence with observations. Properties of old accreting isolated NSs in GCs are briefly discussed. We suggest that accreting NSs in GCs experienced significant magnetic field decay.Comment: 6 pages, no figures. Submitted to Astronomical and Astrophysical Transactions (style included

    On the nature of the compact X-ray source inside RCW 103

    Get PDF
    I discuss the nature of the compact X-ray source inside the supernova remnant RCW 103. Several models, based on the accretion onto a compact object such as a neutron star or a black hole (isolated or binary), are analyzed. I show that it is more likely that the X-ray source is an accreting neutron star than an accreting black hole. I also argue that models of a binary system with an old accreting neutron star are most favored.Comment: 6 pages, 1 PostScript figure, accepted to Astr. Astroph. Tran

    Population synthesis of old neutron stars in the Galaxy

    Get PDF
    The paucity of old isolated accreting neutron stars in ROSAT observations is used to derive a lower limit on the mean velocity of neutron stars at birth. The secular evolution of the population is simulated following the paths of a statistical sample of stars for different values of the initial kick velocity, drawn from an isotropic Gaussian distribution with mean velocity 0≤<V>≤5500\leq < V>\leq 550 kms−1{\rm km s^{-1}}. The spin-down, induced by dipole losses and the interaction with the ambient medium, is tracked together with the dynamical evolution in the Galactic potential, allowing for the determination of the fraction of stars which are, at present, in each of the four possible stages: Ejector, Propeller, Accretor, and Georotator. Taking from the ROSAT All Sky Survey an upper limit of ∼10\sim 10 accreting neutron stars within ∼140\sim 140 pc from the Sun, we infer a lower bound for the mean kick velocity, \ga 200-300 kms−1{\rm km s^{-1}}. The same conclusion is reached for both a constant (B∼1012B\sim 10^{12} G) and a magnetic field decaying exponentially with a timescale ∼109\sim 10^9 yr. Present results, moreover, constrain the fraction of low velocity stars, which could have escaped pulsar statistics, to \la 1%.Comment: 8 pages, 4 PostScript figures, to appear in the proceedings of IAU Symposium 19

    The elusiveness of old neutron stars

    Get PDF
    Old neutron stars (ONSs) which have radiated away their internal and rotational energy may still shine if accreting the interstellar medium. Despite their large number, only two promising candidates have been detected so far and rather stringent limits on their observability follow from the analysis of ROSAT surveys. This contrasts with optimistic theoretical estimates that predicted a large number of sources in ROSAT fields. We have reconsidered the issue of ONSs observability, accounting for the spin and magnetic field evolution over the neutron star lifetime. In the framework of a spin-induced field decay model, we show that the total number of ONSs which are, at present, in the accretion stage is reduced by a factor ~5 over previous figures if the characteristic timescale for crustal current dissipation is ~ 10^8 - 10^9 yr. This brings theoretical predictions much closer to observational limits. Most ONSs should be at present in the propeller phase and, if subject to episodic flaring, they could be observable.Comment: 10 pages Latex, 5 ps figures. To be formatted with the AASTeX package. Accepted for publication in Ap

    Restrictions on parameters of power-law magnetic field decay for accreting isolated neutron stars

    Get PDF
    In this short note we discuss the influence of power-law magnetic field decay on the evolution of old accreting isolated neutron stars. We show, that, contrary to exponential field decay (Popov & Prokhorov 2000), no additional restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. We also briefly discuss the fate of old magnetars with and without field decay, and describe parameters of old accreting magnetars.Comment: 8 pages including 3 PostScript figure

    Log N -- Log S distributions of accreting and cooling isolated neutron stars

    Full text link
    We model populations of isolated neutron stars in the Galaxy following their orbital and magneto-rotational evolution. It is shown that accretors become more abundant than coolers at fluxes below ∼10−13\sim 10^{-13} erg cm−2^{-2} s−1,^{-1}, and one can predict that about one accreting neutron star per square degree should be observed at the {\it Chandra} and {\it Newton} flux limits of ∼10−16\sim 10^{-16} erg cm−2^{-2} s−1.^{-1}. The soft ROSAT sources associated with isolated neutron stars can be relatively young cooling objects only if the neutron star birth rate in the Solar vicinity during the last ∼106\sim 10^6 yr is higher than that inferred from radiopulsar observations.Comment: 5 pages, 3 PostScript figures, accepted to ApJ, new figures 2,
    corecore