2 research outputs found

    Dissipative effects on quantum glassy systems

    Full text link
    We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that the system localizes in the absence of interactions when coupled to a subOhmic bath. When interactions are switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We show that the position of the critical line separating the disordered and the ordered phases strongly depends on the coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling. Ohmic, subOhmic and superOhmic baths lead to different transition lines. We draw our conclusions from the analysis of the partition function using the replicated imaginary-time formalism and from the study of the real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism.Comment: 39 pages, 13 figures, RevTe
    corecore