37 research outputs found
The Induction of APC with a Distinct Tolerogenic Phenotype via Contact-Dependent STAT3 Activation
BACKGROUND: Activation of the signal transducer and activator of transcription 3 (STAT3) within antigen presenting cells (APCs) is linked to abnormal APCs differentiation and function. We have previously shown that STAT3 is activated within APC by a novel contact-dependent mechanism, which plays a key role in mediating the immunomodulatory effects of hMSC. In order to better understand the underlying mechanisms that control APC maturation in a contact dependent manner, we extended our observation to tumor cells. Tumors were shown to secrete a variety of tumor-derived factors that activate STAT3 within infiltrating APCs. We now tested whether tumor cells can activate STAT3 within APC using the contact-dependent mechanism, in addition to soluble factors, and compared these two STAT3 activating pathways. PRINCIPAL FINDINGS: We demonstrate that in addition to tumor-derived secreted factors tumor cells activate STAT3 by a mechanism that is based on cell-cell interaction. We further demonstrate that these two STAT3 activating mechanisms differ in their JAK usage and their susceptibility to JSI-124 inhibition thereby representing two distinct pathways. Significantly, although both pathways activate STAT3, they modulate DCs maturation in a different manner that results in disparate phenotypic outcomes. Whereas the soluble-dependent pathway results in an immature phenotype, the contact-dependent pathway results in an apparently mature phenotype. Albeit their mature-like phenotype these latter cells express the tolerogenic markers ILT3 and ILT4 and possess T cell inhibitory activity. SIGNIFICANCE: This data suggests that, in at least certain cellular microenvironments, cell:cell interactions represent a novel way to activate STAT3 signaling, uncouple APC activation events and consequently regulate immunity and tolerance. Significantly, we have now demonstrated that this contact-dependent signaling pathway differs from that mediated by soluble factors and cytokines, inducing disparate phenotypic outcome, suggesting these two mechanisms have different and possibly complementary biological functions
Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation
A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair
Validation of TRACE one-dimensional model usinh Phenix end of life natural circulation experiments
The demonstrated technological feasibility of sodium-cooled fast reactors (SFRs) makes them stand out among the other fast reactor concepts proposed by Generation-IV International Forum (GIF) for short-term deployment. Therefore, it is necessary to develop computational tools capable of performing reliable safety analyses and plant behavior simulations under complex transient scenarios to assure SFR’s compliance with the highest safety goals. To satisfy this need, a multi-physics 3-dimensional core and system model is being developed. This will allow a more detailed representation of the physics of the plant and to anticipate more accurately plant behavior, even under wider three dimensional scenarios, such as asymmetric transients. As a first step of the tool development, a 1-dimensional thermal-hydraulic model of the French SFR Phenix was created and the Phenix end-of-life natural circulation test was simulated.
The 1-dimensional model transient calculations are in good agreement, both in trend and absolute values, with the experimental data proving the value of the developed model to assess if natural convection is sufficient to cool the Phenix core after a scram. Nevertheless, some phenomena observed experimentally cannot be completely caught due to the 1-dimensional nature of the model. Thus, in view to improve the representation of plant behavior and as next step in the development of the multi-physics computational tool, the developed 1-dimensional model is being extended into a 3-dimensional thermal-hydraulics model. The coupling will be performed using the system codes TRACE-PARCS, modified to simulate more accurately sodium-cooled fast reactors.JRC.G.I.4-Nuclear Reactor Safety and Emergency Preparednes
Multi-physics models for design basis accident analysis of sodium fast reactors. Part I: Validation of three-dimensional TRACE thermal-hydraulics model using Phenix end-of-life experiments
The demonstrated technological feasibility of Sodium-cooled Fast Reactors (SFRs) makes them stand out among the other reactor concepts proposed by Generation IV International Forum (GIF) for short-term deployment. The availability of reliable computational tools in support of safety analyses and plant simulations under complex transient scenarios is essential to assure SFR's compliance with the highest safety goals. Answering this need, a multi-physics three-dimensional core and system model is being developed to enable a more detailed representation of the physics of the plant and to anticipate more accurately plant behaviour, even under wider three-dimensional scenarios, such as asymmetric transients. The coupling will be performed using the U.S.NRC system codes TRACE-PARCS, modified to simulate more accurately when using sodium as coolant. The publicly available end-of-life tests conducted in the French SFR Phenix were chosen as baseline to perform a first validation of the computational model. The development of the tool started with a three-dimensional thermal-hydraulic nodal system of Phenix using the TRACE system code. The system simulates the Phenix end-of-life natural circulation test and the result have been compared with published experimental and benchmark results. The main physical phenomena of the 3 phases of the transient (rise in temperature in the low part of the reactor vessel, establishment of natural convection and subsequent cooling of the lower and upper part of the vessel) are predicted by the developed nodal system. More specifically, the analysis of parameters such as Intermediate Heat Exchangers (IHX), primary pumps and core temperatures, shows that the developed system is able to predict and study natural convection phenomena in Phenix-type reactors. The three-dimensional nodal system is able to clearly illustrate the existing thermal stratification in the hot pool, which is neglected by one-dimensional systems and enables the modelling of thermal hydraulic asymmetric behaviour, as it is shown by the uneven flow distribution in Phenix's primary IHXs as they are asymmetrically located in the reactor vessel.RST/Reactor Physics and Nuclear Material