76,843 research outputs found

    Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer

    Get PDF
    A scheme for linear optical implementation of fault-tolerant quantum computation is proposed, which is based on an error-detecting code. Each computational step is mediated by transfer of quantum information into an ancilla system embedding error-detection capability. Photons are assumed to be subjected to both photon loss and depolarization, and the threshold region of their strengths for scalable quantum computation is obtained, together with the amount of physical resources consumed. Compared to currently known results, the present scheme reduces the resource requirement, while yielding a comparable threshold region.Comment: 9 pages, 7 figure

    Alternative approach to all-angle negative refraction in two-dimensional photonic crystals

    Full text link
    We show that with an appropriate surface modification, a slab of photonic crystal can be made to allow wave transmission within the band gap. Furthermore, negative refraction and all-angle-negative-refraction (AANR) can be achieved by this surface modification in frequency windows that were not realized before in two-dimensional photonic crystals [C. Luo et al, Phys. Rev. B 65, 201104 (2002)]. This approach to AANR leads to new applications in flat lens imaging. Previous flat lens using photonic crystals requires object-image distance u+v less than or equal to the lens thickness d, u+v d. Our approach can be used to design flat lens with u+v=sd with s>>1, thus being able to image large and/or far away objects. Our results are confirmed by FDTD simulations.Comment: 5 pages, 9 eps figs in RevTex forma
    corecore