557 research outputs found
Direct multiscale coupling of a transport code to gyrokinetic turbulence codes
Direct coupling between a transport solver and local, nonlinear gyrokinetic
calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D.
thesis, arxiv:0901.2868] is described. The coupling of the microscopic and
macroscopic physics is done within the framework of multiscale gyrokinetic
theory, of which we present the assumptions and key results. An assumption of
scale separation in space and time allows for the simulation of turbulence in
small regions of the space-time grid, which are embedded in a coarse grid on
which the transport equations are implicitly evolved. This leads to a reduction
in computational expense of several orders of magnitude, making
first-principles simulations of the full fusion device volume over the
confinement time feasible on current computing resources. Numerical results
from TRINITY simulations are presented and compared with experimental data from
JET and ASDEX Upgrade plasmas.Comment: 12 pages, 13 figures, invited paper for 2009 APS-DPP meeting,
submitted to Phys. Plasma
Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX
The gyrokinetic turbulence code GS2 was used to investigate the effects of
plasma beta on linear, collisionless ion temperature gradient (ITG) modes and
trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX)
geometry. Plasma beta affects stability in two ways: through the equilibrium
and through magnetic fluctuations. The first was studied here by comparing ITG
and TEM stability in two NCSX equilibria of differing beta values, revealing
that the high beta equilibrium was marginally more stable than the low beta
equilibrium in the adiabatic-electron ITG mode case. However, the high beta
case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and
electromagnetic ITG and TEM mode growth rate dependencies on temperature
gradient and density gradient were qualitatively similar. The second beta
effect is demonstrated via electromagnetic ITG growth rates' dependency on
GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and
GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure
Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence
Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are
analyzed in the first gyrokinetic simulation spanning all scales from the tail
of the MHD range to the electron gyroradius scale. For typical solar wind
parameters at 1 AU, about 30% of the nonlinear energy transfer close to the
electron gyroradius scale is mediated by modes in the tail of the MHD cascade.
Collisional dissipation occurs across the entire kinetic range
. Both mechanisms thus act on multiple coupled scales,
which have to be retained for a comprehensive picture of the dissipation range
in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear
The first nonlinear gyrokinetic simulations of electron internal transport
barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed
magnetic shear can suppress thermal transport by increasing the nonlinear
critical gradient for electron-temperature-gradient-driven turbulence to three
times its linear critical value. An interesting feature of this turbulence is
nonlinearly driven off-midplane radial streamers. This work reinforces the
experimental observation that magnetic shear is likely an effective way of
triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure
An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear
The first nonlinear gyrokinetic simulations of electron internal transport
barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed
magnetic shear can suppress thermal transport by increasing the nonlinear
critical gradient for electron-temperature-gradient-driven turbulence to three
times its linear critical value. An interesting feature of this turbulence is
nonlinearly driven off-midplane radial streamers. This work reinforces the
experimental observation that magnetic shear is likely an effective way of
triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure
Simulating Gyrokinetic Microinstabilities in Stellarator Geometry with GS2
The nonlinear gyrokinetic code GS2 has been extended to treat
non-axisymmetric stellarator geometry. Electromagnetic perturbations and
multiple trapped particle regions are allowed. Here, linear, collisionless,
electrostatic simulations of the quasi-axisymmetric, three-field period
National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been
successfully benchmarked against the eigenvalue code FULL. Quantitatively, the
linear stability calculations of GS2 and FULL agree to within ~10%.Comment: Submitted to Physics of Plasmas. 9 pages, 14 figure
Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
A set of key properties for an ideal dissipation scheme in gyrokinetic
simulations is proposed, and implementation of a model collision operator
satisfying these properties is described. This operator is based on the exact
linearized test-particle collision operator, with approximations to the
field-particle terms that preserve conservation laws and an H-Theorem. It
includes energy diffusion, pitch-angle scattering, and finite Larmor radius
effects corresponding to classical (real-space) diffusion. The numerical
implementation in the continuum gyrokinetic code GS2 is fully implicit and
guarantees exact satisfaction of conservation properties. Numerical results are
presented showing that the correct physics is captured over the entire range of
collisionalities, from the collisionless to the strongly collisional regimes,
without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe
Recommended from our members
Advances in the simulation of toroidal gyro Landau fluid model turbulence
The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical E{times}B rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons
- …