400 research outputs found
Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug
A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud
\ud
Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids
Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach
We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud
confined tumour growth and to model its impact on cellular processes
Automation of Pivot Sprinkler Irrigation Systems to More Efficiently Utilize Rainfall and Irrigation Water
A study was conducted to develop automated pivot sprinkler irrigation systems and determine if such systems use less water and energy than manually operated systems. The study was conducted near Earth, Texas, using irrigation systems located on producers farms.
Sensors with transmitters and receivers were constructed and tested so that the irrigation systems can be controlled by wind, soil water tension, and rainfall. The sensors can be used separately or in combination to control the irrigation systems.
For several reasons it was not possible to determine if automated systems use less water and energy than manually operated systems. The major reason was the low capacity of the wells (114 to 204 m3/hr) supplying the irrigation systems.
To meet crop water requirements and losses due to evaporation and runoff, the well capacity should be at least 284 m3/hr. Since the wells could not supply adequate water, soil water tension was out of the tensiometer range for the last 60 days of the growing season. Considerable variation in soil water tension and content was noted between irrigation systems and within quadrants of each irrigation system. Systems planted to cotton would probably be easier to automate than those planted in corn because of the lower water requirements of cotton.
The wind and rainfall controls have more promise to aid in increasing water use efficiency than controls activated by soil water sensors. Wind controls could be used during preirrigation when more time is available to apply water and rainfall controls could be an aid to producers with remotely located irrigation systems
Micro-computed tomography (μ-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds
This work studies the influence of dynamic
biomimetic coating procedures on the growth of bonelike
apatite layers at the surface of starch/polycaprolactone
(SPCL) scaffolds produced by a 3D-plotting technology.
These systems are newly proposed for bone Tissue Engineering
applications. After generating stable apatite layers
through a sodium silicate-based biomimetic methodology the
scaffolds were immersed in Simulated Body Fluid solutions
(SBF) under static, agitation and circulating flow perfusion
conditions, for different time periods. Besides the typical
characterization techniques, Micro-Computed Tomography
analysis (μ-CT) was used to assess scaffold porosity and as a
new tool for mapping apatite content. 2D histomorphometric
analysis was performed and 3D virtual models were created
using specific softwares for CT reconstruction. By the proposed
biomimetic routes apatite layers were produced covering
the interior of the scaffolds, without compromising their
overall morphology and interconnectivity. Dynamic conditions
allowed for the production of thicker apatite layers as
consequence of higher mineralizing rates, when comparing
with static conditions. μ-CT analysis clearly demonstrated
that flow perfusion was the most effective condition in order
to obtain well-defined apatite layers in the inner parts
of the scaffolds. Together with SEM, this technique was a useful complementary tool for assessing the apatite content
in a non-destructive way
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes
In the present work we originally tested the suitability
of corn starch-polycaprolactone (SPCL) scaffolds for
pursuing a cartilage tissue engineering approach. Bovine articular
chondrocytes were seeded on SPCL scaffolds under
dynamic conditions using spinner flasks (total of 4 scaffolds
per spinner flask using cell suspensions of 0.5×106 cells/ml)
and cultured under orbital agitation for a total of 6 weeks.
Poly(glycolic acid) (PGA) non-woven scaffolds and bovine
native articular cartilage were used as standard controls for
the conducted experiments. PGA is a kind of standard in
tissue engineering approaches and it was used as a control
in that sense. The tissue engineered constructs were characterized
at different time periods by scanning electron microscopy
(SEM), hematoxylin-eosin (H&E) and toluidine
blue stainings, immunolocalisation of collagen types I and II,
and dimethylmethylene blue (DMB) assay for glycosaminoglycans
(GAG) quantification assay. SEM results for SPCL
constructs showed that the chondrocytes presented normal
morphological features, with extensive cells presence at the
surface of the support structures, and penetrating the scaffolds
pores. These observations were further corroborated
by H&E staining. Toluidine blue and immunohistochemistry
exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II
were detected. However, stronger staining for collagen type
II was observed when compared to collagen type I. The PGA
constructs presented similar features toSPCLat the end of the
6 weeks. PGA constructs exhibited higher amounts of matrix
glycosaminoglycans when compared to the SPCL scaffolds.
However, we also observed a lack of tissue in the central
area of the PGA scaffolds. Reasons for these occurrences
may include inefficient cells penetration, necrosis due to high
cell densities, or necrosis related with acidic by-products
degradation. Such situation was not detected in the SPCL
scaffolds, indicating the much better biocompatibility of the
starch based scaffolds
Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion
The state of the art approaches for tailoring the
degradation of chitosan scaffolds are based on altering the
chemical structure of the polymer. Nevertheless, such alterations
may lead to changes in other properties of scaffolds,
such as the ability to promote cell adhesion. The aim of this
study was to investigate the influence of physical parameters
such as porosity and fibre diameter on the degradation
of chitosan fibre-mesh scaffolds, as a possible way of tailoring
the degradation of such scaffolds. Four sets of scaffolds
with distinct fibre diameter and porosity were produced and
their response to degradation and cell adhesion was studied.
The degradation study was carried out at 37"C in a lysozyme
solution for five weeks. The extent of degradation was expressed
as percentage of weight loss of the dried scaffolds after
lysozyme treatment. Cell adhesion was assessed by Confocal
Microscopy. The results have shown that the scaffolds
with higher porosity degrade faster and that, within the same
range of porosity, the fibres with smaller diameter degrade
slightly faster. Furthermore, the morphological differences
between the scaffolds did not affect the degree of cell adhesion,
and the cells were observed throughout the thickness of
all four types of scaffold
Integrin-Blocking Antibodies Delay Keratinocyte Re-Epithelialization in a Human Three-Dimensional Wound Healing Model
The α6β4 integrin plays a significant role in tumor growth, angiogenesis and metastasis through modulation of growth factor signaling, and is a potentially important therapeutic target. However, α6β4-mediated cell-matrix adhesion is critical in normal keratinocyte attachment, signaling and anchorage to the basement membrane through its interaction with laminin-5, raising potential risks for targeted therapy. Bioengineered Human Skin Equivalent (HSE), which have been shown to mimic their normal and wounded counterparts, have been used here to investigate the consequences of targeting β4 to establish toxic effects on normal tissue homeostasis and epithelial wound repair. We tested two antibodies directed to different β4 epitopes, one adhesion-blocking (ASC-8) and one non-adhesion blocking (ASC-3), and determined that these antibodies were appropriately localized to the basal surface of keratinocytes at the basement membrane interface where β4 is expressed. While normal tissue architecture was not altered, ASC-8 induced a sub-basal split at the basement membrane in non-wounded tissue. In addition, wound closure was significantly inhibited by ASC-8, but not by ASC-3, as the epithelial tongue only covered 40 percent of the wound area at 120 hours post-wounding. These results demonstrate β4 adhesion-blocking antibodies may have adverse effects on normal tissue, whereas antibodies directed to other epitopes may provide safer alternatives for therapy. Taken together, we conclude that these three-dimensional tissue models provide a biologically relevant platform to identify toxic effects induced by candidate therapeutics, which will allow generation of findings that are more predictive of in vivo responses early in the drug development process
Innovative Technics of Managing Engineers' Global Competencies
Higher education modernization in the CIS countries takes place under the conditions of dynamic changes in economy and society. These changes are determined by the social and economic development of the country and the world globalization processes - cross-border intercultural communication, knowledge transparency, and the establishment of information society. Educational globalization is a continuous process of creating a unified global educational system, in which the distinctions between its member educational systems are being blended
- …