6,666 research outputs found
Electrostatic interactions between discrete helices of charge
We analytically examine the pair interaction for parallel, discrete helices
of charge. Symmetry arguments allow for the energy to be decomposed into a sum
of terms, each of which has an intuitive geometric interpretation. Truncated
Fourier expansions for these terms allow for accurate modeling of both the
axial and azimuthal terms in the interaction energy and these expressions are
shown to be insensitive to the form of the interaction. The energy is evaluated
numerically through application of an Ewald-like summation technique for the
particular case of unscreened Coulomb interactions between the charges of the
two helices. The mode structures and electrostatic energies of flexible helices
are also studied. Consequences of the resulting energy expressions are
considered for both F-actin and A-DNA aggregates
Critical properties of the unconventional spin-Peierls system TiOBr
We have performed detailed x-ray scattering measurements on single crystals
of the spin-Peierls compound TiOBr in order to study the critical properties of
the transition between the incommensurate spin-Peierls state and the
paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical
exponent beta which is consistent with the conventional 3D universality
classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a
simple power law fit function we demonstrate that the asymptotic critical
regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/-
0.03 in the asymptotic limit. A power law fit function which includes the first
order correction-to-scaling confluent singularity term can be used to account
for data outside the asymptotic regime, yielding a more robust value of
beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations
above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In
addition, we find that the incommensurate structure between Tc1 and Tc2 is
shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review
On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents
Finite-size scaling (FSS) is a standard technique for measuring scaling
exponents in spin glasses. Here we present a critique of this approach,
emphasizing the need for all length scales to be large compared to microscopic
scales. In particular we show that the replacement, in FSS analyses, of the
correlation length by its asymptotic scaling form can lead to apparently good
scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page
Evidence for the droplet/scaling picture of spin glasses
We have studied the Parisi overlap distribution for the three dimensional
Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T
around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the
full Parisi replica symmetry breaking, just as was also observed in recent
Monte Carlo simulations on a cubic lattice. However, for lower temperatures our
data agree with predictions from the droplet or scaling picture. The failure to
see droplet model behaviour in Monte Carlo simulations is due to the fact that
all existing simulations have been done at temperatures too close to the
transition temperature so that sytem sizes larger than the correlation length
have not been achieved.Comment: 4 pages, 6 figure
The mechanical response of semiflexible networks to localized perturbations
Previous research on semiflexible polymers including cytoskeletal networks in
cells has suggested the existence of distinct regimes of elastic response, in
which the strain field is either uniform (affine) or non-uniform (non-affine)
under external stress. Associated with these regimes, it has been further
suggested that a new fundamental length scale emerges, which characterizes the
scale for the crossover from non-affine to affine deformations. Here, we extend
these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length [D.A. Head et al. PRE
68, 061907 (2003).] controls the mesoscopic response to point forces and the
crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to
clarify the crossover to continuum elasticity and the role of finite-size
effect
Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction
Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle φ of the pion relative to the lepton scattering plane was formed for π^+ electroproduction on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sinφ moment of the cross section is 0.022±0.005±0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a chiral-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark
Coupling of Two Motor Proteins: a New Motor Can Move Faster
We study the effect of a coupling between two motor domains in
highly-processive motor protein complexes. A simple stochastic discrete model,
in which the two parts of the protein molecule interact through some energy
potential, is presented. The exact analytical solutions for the dynamic
properties of the combined motor species, such as the velocity and dispersion,
are derived in terms of the properties of free individual motor domains and the
interaction potential. It is shown that the coupling between the motor domains
can create a more efficient motor protein that can move faster than individual
particles. The results are applied to analyze the motion of helicase RecBCD
molecules
Novel glassy behavior in a ferromagnetic p-spin model
Recent work has suggested the existence of glassy behavior in a ferromagnetic
model with a four-spin interaction. Motivated by these findings, we have
studied the dynamics of this model using Monte Carlo simulations with
particular attention being paid to two-time quantities. We find that the system
shares many features in common with glass forming liquids. In particular, the
model exhibits: (i) a very long-lived metastable state, (ii) autocorrelation
functions that show stretched exponential relaxation, (iii) a non-equilibrium
timescale that appears to diverge at a well defined temperature, and (iv) low
temperature aging behaviour characteristic of glasses.Comment: 6 pages, 5 figure
Commensurate Fluctuations in the Pseudogap and Incommensurate spin-Peierls Phases of TiOCl
X-ray scattering measurements on single crystals of TiOCl reveal the presence
of commensurate dimerization peaks within both the incommensurate spin-Peierls
phase and the so-called pseudogap phase above T_c2. This scattering is
relatively narrow in Q-space indicating long correlation lengths exceeding ~
100 A below T* ~ 130 K. It is also slightly shifted in Q relative to that of
the commensurate long range ordered state at the lowest temperatures, and it
coexists with the incommensurate Bragg peaks below T_c2. The integrated
scattering over both commensurate and incommensurate positions evolves
continuously with decreasing temperature for all temperatures below T* ~ 130 K.Comment: To appear in Physical Review B: Rapid Communications. 5 page
- …