3 research outputs found

    Birkhoff's theorem in the f(T) gravity

    Full text link
    Generalized from the so-called teleparallel gravity which is exactly equivalent to general relativity, the f(T)f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T)f(T) gravity framework must be static and the conclusion is independent of the radial distribution and spherically symmetric motion of the source matter that is, whether it is in motion or static. As a consequence, the Birkhoff's theorem is valid in the general f(T)f(T) theory. We also discuss its application in the de Sitter space-time evolution phase as preferred to by the nowadays dark energy observations.Comment: 5p

    Extended Birkhoff's Theorem in the f(T) Gravity

    Full text link
    The f(T) theory, a generally modified teleparallel gravity, has been proposed as an alternative gravity model to account for the dark energy phenomena. Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011), arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more general context, specifically with the off diagonal tetrad case, in this communication letter. Then, we discuss respectively the results of the external vacuum and internal gravitational field in the f(T) gravity framework, as well as the extended meaning of this theorem. We also investigate the validity of the Birkhoff's theorem in the frame of f(T) gravity via conformal transformation by regarding the Brans-Dicke-like scalar as effective matter, and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial text overlap with arXiv:1107.062

    Birkhoff's Theorem in f(T) Gravity up to the Perturbative Order

    Full text link
    f(T) gravity, a generally modified teleparallel gravity, has become very popular in recent times as it is able to reproduce the unification of inflation and late-time acceleration without the need of a dark energy component or an inflation field. In this present work, we investigate specifically the range of validity of Birkhoff's theorem with the general tetrad field via perturbative approach. At zero order, Birkhoff's theorem is valid and the solution is the well known Schwarzschild-(A)dS metric. Then considering the special case of the diagonal tetrad field, we present a new spherically symmetric solution in the frame of f(T) gravity up to the perturbative order. The results with the diagonal tetrad field satisfy the physical equivalence between the Jordan and the so-called Einstein frames, which are realized via conformal transformation, at least up to the first perturbative order.Comment: 8 pages, no figure. Final version, accepted for publication in EPJ
    corecore