2 research outputs found
Conformal Mapping on Rough Boundaries II: Applications to bi-harmonic problems
We use a conformal mapping method introduced in a companion paper to study
the properties of bi-harmonic fields in the vicinity of rough boundaries. We
focus our analysis on two different situations where such bi-harmonic problems
are encountered: a Stokes flow near a rough wall and the stress distribution on
the rough interface of a material in uni-axial tension. We perform a complete
numerical solution of these two-dimensional problems for any univalued rough
surfaces. We present results for sinusoidal and self-affine surface whose slope
can locally reach 2.5. Beyond the numerical solution we present perturbative
solutions of these problems. We show in particular that at first order in
roughness amplitude, the surface stress of a material in uni-axial tension can
be directly obtained from the Hilbert transform of the local slope. In case of
self-affine surfaces, we show that the stress distribution presents, for large
stresses, a power law tail whose exponent continuously depends on the roughness
amplitude
Conformal Mapping on Rough Boundaries I: Applications to harmonic problems
The aim of this study is to analyze the properties of harmonic fields in the
vicinity of rough boundaries where either a constant potential or a zero flux
is imposed, while a constant field is prescribed at an infinite distance from
this boundary. We introduce a conformal mapping technique that is tailored to
this problem in two dimensions. An efficient algorithm is introduced to compute
the conformal map for arbitrarily chosen boundaries. Harmonic fields can then
simply be read from the conformal map. We discuss applications to "equivalent"
smooth interfaces. We study the correlations between the topography and the
field at the surface. Finally we apply the conformal map to the computation of
inhomogeneous harmonic fields such as the derivation of Green function for
localized flux on the surface of a rough boundary