1,527 research outputs found

    The Quest for the Heaviest Uranium Isotope

    Full text link
    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.Comment: 4 pages, 5. figure

    Path Integral for Quantum Operations

    Full text link
    In this paper we consider a phase space path integral for general time-dependent quantum operations, not necessarily unitary. We obtain the path integral for a completely positive quantum operation satisfied Lindblad equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator.Comment: 24 pages, LaTe

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Transport Equations from Liouville Equations for Fractional Systems

    Full text link
    We consider dynamical systems that are described by fractional power of coordinates and momenta. The fractional powers can be considered as a convenient way to describe systems in the fractional dimension space. For the usual space the fractional systems are non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoliubov equations for fractional systems. Fractional generalization of average values and reduced distribution functions are defined. Hydrodynamic equations for fractional systems are derived from the generalized transport equation.Comment: 11 pages, LaTe

    Analytical on-shell QED results: 3-loop vacuum polarization, 4-loop beta-function and the muon anomaly

    Full text link
    We present the results of analytical calculations of the 3-loop contributions to the asymptotic photon vacuum polarization function, in the on shell scheme, and of the 4-loop contributions to the on shell QED beta-function. These are used to evaluate various 4-loop and 5-loop contributions to the muon anomaly. Our analytical contributions to (g-2)_\mu differ significantly from previous numerical results. A very recent numerical re-evaluation of 4-loop muon-anomaly contributions has yielded results much closer to ours.Comment: LaTex, 11 pages, figures available from O.V.T. CERN--TH. 6602/92, OUT--4102--39, BI--TP--92/3

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Propagation of wave packets in randomly stratified media

    Full text link
    The propagation of a narrow-band signal radiated by a point source in a randomly layered absorbing medium is studied asymptotically in the weak-scattering limit. It is shown that in a disordered stratified medium that is homogeneous on average a pulse is channelled along the layers in a narrow strip in the vicinity of the source. The space-time distribution of the pulse energy is calculated. Far from the source, the shape of wave packets is universal and independent of the frequency spectrum of the radiated signal. Strong localization effects manifest themselves also as a low-decaying tail of the pulse and a strong time delay in the direction of stratification. The frequency-momentum correlation function in a one-dimensional random medium is calculated.Comment: 11 pages, 3 figures, Revtex-4. Submitted to Phys. Rev.
    corecore