6,955 research outputs found
Thermal budget of superconducting digital circuits at sub-kelvin temperatures
Superconducting single-flux-quantum (SFQ) circuits have so far been developed
and optimized for operation at or above helium temperatures. The SFQ approach,
however, should also provide potentially viable and scalable control and
read-out circuits for Josephson-junction qubits and other applications with
much lower, milli-kelvin, operating temperatures. This paper analyzes the
overheating problem which becomes important in this new temperature range. We
suggest a thermal model of the SFQ circuits at sub-kelvin temperatures and
present experimental results on overheating of electrons and silicon substrate
which support this model. The model establishes quantitative limitations on the
dissipated power both for "local" electron overheating in resistors and
"global" overheating due to ballistic phonon propagation along the substrate.
Possible changes in the thermal design of SFQ circuits in view of the
overheating problem are also discussed.Comment: 10 pages, 8 figures, submitted to J. Appl. Phy
Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments
An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool
Transverse modulational instability of partially incoherent soliton stripes
Based on the Wigner distribution approach, an analysis of the effect of
partial incoherence on the transverse instability of soliton structures in
nonlinear Kerr media is presented. It is explicitly shown, that for a
Lorentzian incoherence spectrum the partial incoherence gives rise to a damping
which counteracts, and tends to suppress, the transverse instability growth.
However, the general picture is more complicated and it is shown that the
effect of the partial incoherence depends crucially on the form of the
incoherence spectrum. In fact, for spectra with finite rms-width, the partial
incoherence may even increase both the growth rate and the range of unstable,
transverse wave numbers.Comment: 5 pages, submitted to Phys. Rev.
Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation
Two cases of weakly and strongly stressed X-point collapse were considered.
Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional
spatial compression of the X-point, respectively. In the weakly stressed case,
the reconnection rate, defined as the out-of-plane electric field in the
X-point (the magnetic null) normalised by the product of external magnetic
field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en
times being 0.04. Electron energy distribution in the current sheet, at the
high energy end of the spectrum, shows a power law distribution with the index
varying in time, attaining a maximal value of -4.1 at the final simulation time
step (1.25 Alfv\'en times). In the strongly stressed case, magnetic
reconnection peak occurs 3.4 times faster and is more efficient. The peak
reconnection rate now attains value 2.5, with the average reconnection rate
over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the
electrons in the current sheet attains now a steeper index of -5.5, a value
close to the ones observed in the vicinity of X-type region in the Earth's
magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial
magnteic energy is converted into heat and accelerated particle energy in the
case of weak and strong stress, respectively. In the both cases, during the
peak of the reconnection, the quadruple out-of-plane magnetic field is
generated, hinting possibly to the Hall regime of the reconnection. These
results strongly suggest the importance of the collionless, stressed X-point
collapse as a possible contributing factor to the solution of the solar coronal
heating problem or more generally, as an efficient mechanism of converting
magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007
Search for solar axions produced by Compton process and bremsstrahlung using the resonant absorption and axioelectric effect
The search for resonant absorption of Compton and bremsstrahlung solar axions
by Tm nuclei have been performed. Such an absorption should lead to the
excitation of low-lying nuclear energy level: Tm Tm Tm (8.41 keV). Additionally the
axio-electric effect in silicon atoms is sought. The axions are detected using
a Si(Li) detectors placed in a low-background setup. As a result, a new model
independent restrictions on the axion-electron and the axion-nucleon coupling:
and the axion-electron
coupling constant: has been obtained. The
limits leads to the bounds 7.9 eV and 1.3 keV for the
mass of the axion in the DFSZ and KSVZ models, respectively ( C.L.).Comment: 6 pages, 3 figures, contributed to the 9th Patras Workshop on Axions,
WIMPs and WISPs, Mainz, June 24-28, 201
- …