1,121 research outputs found

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure

    Excitation of the electric pygmy dipole resonance by inelastic electron scattering

    Full text link
    To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR) obtained in various nuclear reactions, the excitation of the 1^- states in 140^{140}Ce by (e,e)(e,e') scattering for momentum transfers q=0.11.2q=0.1-1.2~fm1^{-1} is calculated within the plane-wave and distorted-wave Born approximations. The excited states of the nucleus are described within the Quasiparticle Random Phase Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states in (e,e)(e,e') reactions is predominantly of transversal nature for scattering angles θe90o180o\theta_e \approx 90^o-180^o. Being thus mediated by the convection and spin nuclear currents, the (e,e)(e,e') like the (γ,γ)(\gamma,\gamma') reaction, may provide additional information to the one obtained from Coulomb- and hadronic excitations of the PDR in (p,p)(p,p'), (α,α)(\alpha,\alpha'), and heavy-ion scattering reactions. The calculations predict that the (e,e)(e,e') cross sections for the strongest individual PDR states are in general about three orders of magnitude smaller as compared to the one of the lowest 21+2^+_1 state for the studied kinematics, but that they may become dominant at extreme backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy, Pairing Resonances and related topics" dedicated to the memory of Pier Francesco Bortigno

    Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities

    Full text link
    We calculate the singlet-triplet splitting for a couple of two-dimensional electrons in the potential of two positively charged impurities which are located out of plane. We consider different relations between vertical distances of impurities h1h_1 and h2h_2 and their lateral distance RR. Such a system has never been studied in atomic physics but the methods, worked out for regular two-atomic molecules and helium atom, have been found to be useful. Analytical expressions for several different limiting configurations of impurities are obtained an interpolated formula for intermediate range of parameters is proposed. The RR-dependence of the splitting is shown to become weaker with increasing h1,h2h_1,h_2.Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.

    Angular distributions of scattered excited muonic hydrogen atoms

    Full text link
    Differential cross sections of the Coulomb deexcitation in the collisions of excited muonic hydrogen with the hydrogen atom have been studied for the first time. In the framework of the fully quantum-mechanical close-coupling approach both the differential cross sections for the nlnlnl \to n'l' transitions and ll-averaged differential cross sections have been calculated for exotic atom in the initial states with the principle quantum number n=26n=2 - 6 at relative motion energies Ecm=0.0115E_{\rm {cm}}=0.01 - 15 eV and at scattering angles θcm=0180\theta_{\rm {cm}}=0 - 180^{\circ}. The vacuum polarization shifts of the nsns-states are taken into account. The calculated in the same approach differential cross sections of the elastic and Stark scattering are also presented. The main features of the calculated differential cross sections are discussed and a strong anisotropy of cross sections for the Coulomb deexcitation is predicted.Comment: 5 pages, 9 figure

    Anharmonic properties of double giant dipole resonance

    Get PDF
    A systematic microscopic study of the anharmonic properties of the double giant dipole resonance (DGDR) has been carried out, for the first time, for nuclei with mass number AA spanning the whole mass table. It is concluded that the corrections of the energy centroid of the Jπ=0+J^{\pi} = 0^+ and 2+2^+ components of the DGDR from its harmonic limit are negative, have a value of the order of few hundred keV and follow an A1A^{-1} dependence.Comment: 4 pages, 2 figure
    corecore