3,238 research outputs found
Zero Temperature Insulator-Metal Transition in Doped Manganites
We study the transition at T=0 from a ferromagnetic insulating to a
ferromagnetic metallic phase in manganites as a function of hole doping using
an effective low-energy model Hamiltonian proposed by us recently. The model
incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly
coupled to orbitally degenerate electrons as well as strong Coulomb correlation
effects and leads naturally to the coexistence of localized (JT polaronic) and
band-like electronic states. We study the insulator-metal transition as a
function of doping as well as of the correlation strength U and JT gain in
energy E_{JT}, and find, for realistic values of parameters, a ground state
phase diagram in agreement with experiments. We also discuss how several other
features of manganites as well as differences in behaviour among manganites can
be understood in terms of our model.Comment: To be published in Europhysics Letter
Superfluid, Mott-Insulator, and Mass-Density-Wave Phases in the One-Dimensional Extended Bose-Hubbard Model
We use the finite-size density-matrix-renormalization-group (FSDMRG) method
to obtain the phase diagram of the one-dimensional () extended
Bose-Hubbard model for density in the plane, where and
are, respectively, onsite and nearest-neighbor interactions. The phase diagram
comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density
Wave (MDW). For small values of and , we get a reentrant SF-MI-SF phase
transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We
show, by a detailed finite-size scaling analysis, that the MI-SF transition is
of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both KT and
two-dimensional-Ising characters. For large values of and we get a
direct, first-order, MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase
boundaries join at a bicritical point at (.Comment: 10 pages, 15 figure
Superfluid-Insulator transition of ultracold atoms in an optical lattice in the presence of a synthetic magnetic field
We study the Mott insulator-superfluid transition of ultracold bosonic atoms
in a two-dimensional square optical lattice in the presence of a synthetic
magnetic field with p/q (p and q being co-prime integers) flux quanta passing
through each lattice plaquette. We show that on approach to the transition from
the Mott side, the momentum distribution of the bosons exhibits q precursor
peaks within the first magnetic Brillouin zone. We also provide an effective
theory for the transition and show that it involves q interacting boson fields.
We construct, from a mean-field analysis of this effective theory, the
superfluid ground states near the transition and compute, for q=2,3, both the
gapped and the gapless collective modes of these states. We suggest experiments
to test our theory.Comment: 4 pages, 4 figs; v
On some fixed point theorems in Banach spaces
In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ćirić and Rhoades
Improving the Sensitivity of LISA
It has been shown in the past, that the six Doppler data streams obtained
LISA configuration can be combined by appropriately delaying the data streams
for cancelling the laser frequency noise. Raw laser noise is several orders of
magnitude above the other noises and thus it is essential to bring it down to
the level of shot, acceleration noises. A rigorous and systematic formalism
using the techniques of computational commutative algebra was developed which
generates all the data combinations cancelling the laser frequency noise. The
relevant data combinations form a first module of syzygies. In this paper we
use this formalism for optimisation of the LISA sensitivity by analysing the
noise and signal covariance matrices. The signal covariance matrix, averaged
over polarisations and directions, is calculated for binaries whose frequency
changes at most adiabatically. We then present the extremal SNR curves for all
the data combinations in the module. They correspond to the eigenvectors of the
noise and signal covariance matrices. We construct LISA `network' SNR by
combining the outputs of the eigenvectors which improves the LISA sensitivity
substantially. The maximum SNR curve can yield an improvement upto 70 % over
the Michelson, mainly at high frequencies, while the improvement using the
network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy
model, in which LISA rotates in a plane. In this analysis, we estimate the
improvement in the LISA sensitivity, if one switches from one data combination
to another as it rotates. Here the improvement in sensitivity, if one switches
optimally over three cyclic data combinations of the eigenvector is about 55 %
on an average over the LISA band-width. The corresponding SNR improvement is 60
%, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit
The Prevalence of Latent Mycobacterium Tuberculosis Infection Based on an Interferon-γ Release Assay: A Cross-Sectional Survey Among Urban Adults in Mwanza, Tanzania.
One third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis (LTBI). Surveys of LTBI are rarely performed in resource poor TB high endemic countries like Tanzania although low-income countries harbor the largest burden of the worlds LTBI. The primary objective was to estimate the prevalence of LTBI in household contacts of pulmonary TB cases and a group of apparently healthy neighborhood controls in an urban setting of such a country. Secondly we assessed potential impact of LTBI on inflammation by quantitating circulating levels of an acute phase reactant: alpha-1-acid glycoprotein (AGP) in neighborhood controls. The study was nested within the framework of two nutrition studies among TB patients in Mwanza, Tanzania. Household contacts- and neighborhood controls were invited to participate. The study involved a questionnaire, BMI determination and blood samples to measure AGP, HIV testing and a Quantiferon Gold In tube (QFN-IT) test to detect signs of LTBI. 245 household contacts and 192 neighborhood controls had available QFN-IT data. Among household contacts, the proportion of QFT-IT positive was 59% compared to 41% in the neighborhood controls (p = 0.001). In a linear regression model adjusted for sex, age, CD4 and HIV, a QFT-IT positive test was associated with a 10% higher level of alpha-1-acid glycoprotein(AGP) (10(B) 1.10, 95% CI 1.01; 1.20, p = 0.03), compared to individuals with a QFT-IT negative test. LTBI is highly prevalent among apparently healthy urban Tanzanians even without known exposure to TB in the household. LTBI was found to be associated with elevated levels of AGP. The implications of this observation merit further studies
T-Cell Assays for Tuberculosis Infection: Deriving Cut-Offs for Conversions Using Reproducibility Data
Although interferon-gamma release assays (IGRA) are promising alternatives to the tuberculin skin test, interpretation of repeated testing results is hampered by lack of evidence on optimal cut-offs for conversions and reversions. A logical start is to determine the within-person variability of T-cell responses during serial testing.We performed a pilot study in India, to evaluate the short-term reproducibility of QuantiFERON-TB Gold In Tube assay (QFT) among 14 healthcare workers (HCWs) who underwent 4 serial QFT tests on day 0, 3, 9 and 12. QFT ELISA was repeated twice on the same sets of specimens. We assessed two types of reproducibility: 1) test-retest reproducibility (between-test variability), and 2) within-person reproducibility over time. Test-retest reproducibility: with dichotomous test results, extremely high concordance was noticed between two tests performed on the same sets of specimens: of the 56 samples, the test and re-test results agreed for all but 2 individuals (kappa = 0.94). Discordance was noted in subjects who had IFN-gamma values around the cut-off point, with both increases and decreases noted. With continuous IFN-gamma results, re-test results tended to produce higher estimates of IFN-gamma than the original test. Within-person reproducibility: when continuous IFN-gamma data were analyzed, the within-person reproducibility was moderate to high. While persons with negative QFT results generally stayed negative, positive results tended to vary over time. Our data showed that increases of more than 16% in the IFN-gamma levels are statistically improbable in the short-term.Conservatively assuming that long-term variability might be at least twice higher than short-term, we hypothesize that a QFT conversion requires two conditions to be met: 1) change from negative to positive result, and 2) at least 30% increase in the baseline IFN-gamma response. Larger studies are needed to confirm our preliminary findings, and determine the conversion thresholds for IGRAs
Low-temperature far-infrared ellipsometry of convergent beam
Development of an ellipsometry to the case of a coherent far infrared
irradiation, low temperatures and small samples is described, including a
decision of the direct and inverse problems of the convergent beam ellipsometry
for an arbitrary wavelength, measurement technique and a compensating
orientation of cryostat windows. Experimental results are presented: for a gold
film and UBe13 single crystal at room temperature (lambda=119 um), temperature
dependencies of the complex dielectric function of SrTiO3 (lambda=119, 84 and
28 um) and of YBa2Cu3O7-delta ceramic (lambda=119 um).Comment: 14 pages, 6 figure
Phases of the one-dimensional Bose-Hubbard model
The zero-temperature phase diagram of the one-dimensional Bose-Hubbard model
with nearest-neighbor interaction is investigated using the Density-Matrix
Renormalization Group. Recently normal phases without long-range order have
been conjectured between the charge density wave phase and the superfluid phase
in one-dimensional bosonic systems without disorder. Our calculations
demonstrate that there is no intermediate phase in the one-dimensional
Bose-Hubbard model but a simultaneous vanishing of crystalline order and
appearance of superfluid order. The complete phase diagrams with and without
nearest-neighbor interaction are obtained. Both phase diagrams show reentrance
from the superfluid phase to the insulator phase.Comment: Revised version, 4 pages, 5 figure
- …