377 research outputs found

    Capture of particles of dust by convective flow

    Full text link
    Interaction of particles of dust with vortex convective flows is under theoretical consideration. It is assumed that the volume fraction of solid phase is small, variations of density due to nonuniform distribution of particles and those caused by temperature nonisothermality of medium are comparable. Equations for the description of thermal buoyancy convection of a dusty medium are developed in the framework of the generalized Boussinesq approximation taking into account finite velocity of particle sedimentation. The capture of a cloud of dust particles by a vortex convective flow is considered, general criterion for the formation of such a cloud is obtained. The peculiarities of a steady state in the form of a dust cloud and backward influence of the solid phase on the carrier flow are studied in detail for a vertical layer heated from the sidewalls. It is shown that in the case, when this backward influence is essential, a hysteresis behavior is possible. The stability analysis of the steady state is performed. It turns out that there is a narrow range of governing parameters, in which such a steady state is stable.Comment: 14 pages, 10 figures, published in Physics of Fluid

    Analysis of vibration impact on stability of dewetting thin liquid film

    Full text link
    Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description is reasonable and the amplitude equation holds. The linear and nonlinear analyses of the amplitude equation and the numerical computations show that such vibration stabilizes the film against dewetting and rupture.Comment: 19 pages, 11 figure

    Orbital structure of the meteor complex according to radar observations in Kazan. 1. Apparent distributions of aphelia

    Get PDF
    The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth's atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment-in particular, in terms of velocity-is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex. © 2008 MAIK Nauka

    Post-vaccination immunity phenotypes upon usage of EpiVacCorona vaccine in the persons who suffered COVID-19

    Get PDF
    The dominance of reliably immunized population is a fundamental factor in prevention of COVID-19 pandemia, with immune prophylaxis taking a dominant position. Due to lack of clear data on the intensity of specific immunity after a new coronavirus infection, consolidation of immunological memory by vaccination becomes the urgent task, in order to exclude the risk of re-involvement of previously ill patients into the epidemic process. Meanwhile, many questions related to vaccination of COVID-19 survivors do not get distinct answers. To study the features of immune response, using a vaccine based on SARS-CoV-2 peptide antigens (EpiVacCorona), we monitored 81 participants. The inclusion criteria were data confirming COVID-19 in the anamnesis (medical documentation), low levels or absence of antibodies to the SARS-CoV-2 nucleocapsid protein, and negative PCR tests for SARS-CoV-2. When assessing the data of post-vaccinal immunity checked 21 days after 1st dose of the vaccine, the patients were divided into 2 groups: those who did not respond, and those who developed the immune response. In order to identify possible reasons for different phenotypic patterns of humoral response to vaccination, a comparative analysis of B lymphocyte indexes was carried out in these groups. Absolute counts, subpopulation composition and activation potential of peripheral blood B lymphocytes were determined by flow cytofluorometry using appropriate labeled monoclonal antibodies purchased from Beсkman Coulter. Comparative analysis of B lymphocyte indexes on the day of first vaccination showed that the persons who did not respond to the vaccine had smaller counts of circulating B cells, i.e., both percentage and absolute cell numbers, than in comparison group, as well as changed ratio of B1-to-B2 subpopulations. After administration of the first vaccine dose (by day +21), in alternative variant of the antibody response to V1, the differences in the parameters of B cells were presented as a smaller percentage and absolute numbers of regulatory B lymphocytes in non-responding participants. Moreover, the contents of minor B cell subpopulations were decreased in the non-responding group than in the comparison group, thus affecting the values of the B1:B2 ratio. In general, the presented data demonstrate that the absence of secondary immune response to antigens of the SARS-CoV-2 peptide vaccine could be is associated with altered differentiation of B1 and B2 subpopulations, B regulatory lymphocytes, B memory cells

    Mechanisms of formation of hybrid immunity in people who recovered from COVID-19 and were vaccinated with SARS-CoV-2 peptide antigens

    Get PDF
    The relevance of the current epidemic situation of a new coronavirus infection is determined by new strains of the virus and the registration of cases of re-infection in COVID-19 survivors earlier. In this regard, the questions about the expediency and nature of vaccination of those who have been ill attract close attention, moreover it has affected the formation of the concept of “hybrid immunity”. The aim of this study was to analyze changes in the parameters of the immune system, reflecting their regulatory and functional potential, in response to the introduction of the peptide vaccine EpiVacCorona to persons who have suffered from the new coronavirus infection. To study the features of the formation of hybrid immunity, a retrospective analysis of the observation of 43 study participants was carried out. The inclusion criteria were data confirming COVID-19 in mild and moderate forms of the course in the period from six months to a year ago, a low level or absence of antibodies to the nucleocapsid protein SARS-CoV-2, a negative PCR result for the presence of the SARS-CoV-2 virus, the absence of comorbid pathology. The subpopulation composition, regulatory and functional potential of the immune system were determined by flow cytofluorimetry using a set of monoclonal antibodies corresponding to the goals. 21 days after the administration of a single dose of EpiVacCorona, antibodies to the vaccine peptide antigens were registered in all study participants at the highest coefficient of positivity values for the SARS-CoV-2-IgG-Vector test system used. In addition, there was a fourfold increase in the number of specific IgG to the N protein. A specific immune response to recombinant SARS-CoV-2 antigens was accompanied by a decrease in the circulation of the number of monocytes expressing TLR4, T helper cells expressing the interaction coreceptor with antigen-presenting cells, unconnected B memory with an increase in the number of B lymphocytes expressing the CD40 T-B coreceptor interaction molecule. The remaining differences in the functioning of the immune system identified in patients with COVID-19 before the vaccination in comparison with the control data have not changed. The differences consist in a decrease in the proportion of monocytes expressing HLA-DR, an increase in the expression of interaction molecules on T and B lymphocytes, an increase in the number of Treg, B1 cells, activated B lymphocytes with a decrease in the proportion of suppressor Breg and B memory. The totality of the presented data demonstrates that the COVID-19 infection that preceded vaccination in mild and moderate clinical course contributes to the formation of immunological memory, which made it possible to form a secondary immune response even to a single injection of peptide antigens of the virus

    Neutral Particles in Light of the Majorana-Ahluwalia Ideas

    Get PDF
    The first part of this article (Sections I and II) presents oneself an overview of theory and phenomenology of truly neutral particles based on the papers of Majorana, Racah, Furry, McLennan and Case. The recent development of the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994) 439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present experimental situation in neutrino physics and astrophysics. In Section III the new fundamental wave equations for self/anti-self conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW) type quantum field theory is found. The possible applications to the problem of neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure
    • 

    corecore