17,694 research outputs found

    Effects of electron coupling to intra- and inter-molecular vibrational modes on the transport properties of single crystal organic semiconductors

    Full text link
    Electron coupling to intra- and inter-molecular vibrational modes is investigated in models appropriate to single crystal organic semiconductors, such as oligoacenes. Focus is on spectral and transport properties of these systems beyond perturbative approaches. The interplay between different couplings strongly affects the temperature band renormalization that is the result of a subtle equilibrium between opposite tendencies: band narrowing due to interaction with local modes, band widening due to electron coupling to non local modes. The model provides an accurate description of the mobility as function of temperature: indeed, it has the correct order of magnitude, at low temperatures, it scales as a power-law T−δT^{-\delta} with the exponent δ\delta larger than unity, and, at high temperatures, shows an hopping behavior with a small activation energy.Comment: 3 Figures, Submitte

    Nonlinear Realizations of Supersymmetry and Other Symmetries

    Full text link
    Simultaneous nonlinear realizations of spontaneously broken supersymmetry in conjunction with other spontaneous and/or explicitly broken symmetries including R symmetry, global chiral symmetry, dilatations and the superconformal symmetries is reviewed.Comment: 15 pages, invited brief review for Mod. Phys. Lett.

    Spin-dependent recombination in Czochralski silicon containing oxide precipitates

    Full text link
    Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements reveal that photo-excited charge carriers recombine through Pb0 and Pb1 dangling bonds and comparison to precipitate-free material indicates that these are present at both the sample surface and the oxide precipitates. The electronic recombination rates vary approximately linearly with precipitate density. Additional resonance lines arising from iron-boron and interstitial iron are observed and discussed. Our observations are inconsistent with bolometric heating and interpreted in terms of spin-dependent recombination. Electrically detected magnetic resonance is thus a very powerful and sensitive spectroscopic technique to selectively probe recombination centers in modern photovoltaic device materials.Comment: 8 pages, 8 figure

    Persistent X-Ray Photoconductivity and Percolation of Metallic Clusters in Charge-Ordered Manganites

    Full text link
    Charge-ordered manganites of composition Pr1−x(Ca1−ySry)xMnO3\rm Pr_{1-x}(Ca_{1-y}Sr_{y})_{x}MnO_3 exhibit persistent photoconductivity upon exposure to x-rays. This is not always accompanied by a significant increase in the {\it number} of conduction electrons as predicted by conventional models of persistent photoconductivity. An analysis of the x-ray diffraction patterns and current-voltage characteristics shows that x-ray illumination results in a microscopically phase separated state in which charge-ordered insulating regions provide barriers against charge transport between metallic clusters. The dominant effect of x-ray illumination is to enhance the electron {\it mobility} by lowering or removing these barriers. A mechanism based on magnetic degrees of freedom is proposed.Comment: 8 pages, 4 figure

    Interplay between electron-phonon couplings and disorder strength on the transport properties of organic semiconductors

    Full text link
    The combined effect of bulk and interface electron-phonon couplings on the transport properties is investigated in a model for organic semiconductors gated with polarizable dielectrics. While the bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the interface coupling is dominant for the activated high TT contribution of localized polarons. In order to improve the description of the transport properties, the presence of disorder is needed in addition to electron-phonon couplings. The effects of a weak disorder largely enhance the activation energies of mobility and induce the small polaron formation at lower values of electron-phonon couplings in the experimentally relevant window 150K<T<300K150 K<T<300 K. The results are discussed in connection with experimental data of rubrene organic field-effect transistors.Comment: 4 pages, 3 figure

    X-ray fluoresced high-Z (up to Z = 82) K-x-rays produced by LiNbO3 and LiTaO3 pyroelectric crystal electron accelerators

    Get PDF
    High-energy bremsstrahlung and K X-rays were used to produce nearly background-free K X-ray spectra of up to 87 keV (Pb) via X-ray fluorescence. The fluorescing radiation was produced by electron accelerators, consisting of heated and cooled cylindrical LiTaO3 and LiNbO3 crystals at mTorr pressures. The newly discovered process of gas amplification whereby the ambient gas pressure is optimized to maximize the electron energy was used to produce energetic electrons which when incident on a W/Bi target gave rise to a radiation field consisting of high-energy bremsstrahlung as well as W and Bi K X-rays. These photons were used to fluoresce Ta and Pb K X-rays.Comment: 6 pages, 6 figures, PD

    Theory of the Franck-Condon blockade regime

    Full text link
    Strong coupling of electronic and vibrational degrees of freedom entails a low-bias suppression of the current through single-molecule devices, termed Franck-Condon blockade. In the limit of slow vibrational relaxation, transport in the Franck-Condon-blockade regime proceeds via avalanches of large numbers of electrons, which are interrupted by long waiting times without electron transfer. The avalanches consist of smaller avalanches, leading to a self-similar hierarchy which terminates once the number of transferred electrons per avalanche becomes of the order of unity. Experimental signatures of self-similar avalanche transport are strongly enhanced current (shot) noise, as expressed by giant Fano factors, and a power-law noise spectrum. We develop a theory of the Franck-Condon-blockade regime with particular emphasis on effects of electron cotunneling through highly excited vibrational states. As opposed to the exponential suppression of sequential tunneling rates for low-lying vibrational states, cotunneling rates suffer only a power-law suppression. This leads to a regime where cotunneling dominates the current for any gate voltage. Including cotunneling within a rate-equation approach to transport, we find that both the Franck-Condon blockade and self-similar avalanche transport remain intact in this regime. We predict that cotunneling leads to absorption-induced vibrational sidebands in the Coulomb-blockaded regime as well as intrinsic telegraph noise near the charge degeneracy point.Comment: 20 pages, 10 figures; minor changes, version published in Phys. Rev.

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure
    • …
    corecore