5 research outputs found

    The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    No full text
    Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns). The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.</p

    Vacuum arc on the polycrystalline silica cathode

    No full text
    Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica) cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450ÎĽm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.</p

    On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping

    No full text
    The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices. Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for lowaltitude spacecrafts. The work has been supported by the RFFR grant 16-38-00776\16 as of 25.02.201

    The electrohydraulic balance of the solar heat storage with autonomous power supply

    No full text
    The introduction of the paper emphasizes an increasingly important role of alternative power sources nowadays. At the same time, a solar collector (suntrap) is one of the most frequent techniques to use the solar energy. It is an absorber that picks up solar radiation and heats a heat carrier circulating in the close loop. Then the heat is transferred to the heat accumulator that is integrated in the hot-tap water system (HWS).The paper presents a prospective circuit of the solar collector. It differs from the traditional one because, in addition to absorbing panel, it uses photoconverters to generate electric power for the circulating pump. The advantage of this system is that for operation such a solar energy converter has no need in external power sources, i.e. it is autonomous. The need to calculate the essential thermo-physical parameters that ensure no-break system operation was stated as a main objective of the work.The suggested circuit has a photocell panel to convert solar radiation into dc voltage of 12 V. In case of a lack of the solar energy an accumulator battery can be used for feeding. To ensure the no-break supply of power an adaptor is offered.To calculate a density distribution of solar radiation a sine law is offered depending on the time of day and geographical locality. This dependence was used to obtain the expressions for calculating the water temperature in boiler over daytime.Further, the calculations have been done for the operating conditions under which an efficient heat exchange will be provided with the minimum consumption of electric power for the heat carrier circulation in the first loop. For this purpose, a pump power was calculated depending on consumption and hydraulic losses of head in the pipeline. As a minimum required consumption the value has been chosen at which a laminar flow regime changes to the turbulent one because of the most efficient heat exchange being both in collector and in heat accumulator. The hydraulic loss has been calculated by Darcy-Weisbach equation. Finally, the formula has been obtained to calculate a minimum area of photo converters to be needed for the solar power system to ensure no-break operation. As a result of studies, it has been found that with typical external parameters, the area required for photo converters is about 100- 300 cm2 . Dependences to calculate main parameters of system components including necessary minimum areas of absorber and photo converter, pump power, heat carrier consumption has been obtained as well.The paper conclusions are as follows. The model of solar heat accumulator obtained in the paper makes it possible to calculate main parameters of system components. Required photo converter dimensions have acceptable values. Also it is necessary to calculate the convection exchange processes in absorber to optimize a design for reducing the thermal and hydraulic losses.Further, the paper presents the calculation of operating conditions under which an efficient heat exchange is ensured with minimum consumption of electric power for the heat carrier circulation in the first loop. For this, a pump power has been calculated depending on the consumption and hydraulic losses in the pipeline.</p

    Influence of the Ion Treatment Regime on Defects Density and Surface Destruction of the Polycrystalline Glass

    No full text
    The ion beam technology is used for finish treatment of large-scale optic parts to achieve highest precision and minimal surface roughness. The surface roughness increases during the ion treatment of polycrystalline materials in contrast to usual optic materials. This is caused, first, by polycrystalline structure of material and, second, by micro-defects appearing on its surface. The aim of the work is to investigate the influence of ion processing conditions on the amount of defects formed on the polycrystalline glass CO-115M.As an ion source, was used the anode layer accelerator with electromagnetically focusing ion beam and with excess charge compensation on the residual gas. The ion accelerator provided Gaussian ion current distribution on the treated sample surface. The accelerator had three operation conditions: 1 – Ud = 2 kV, Id = 110 mA; 2 – Ud = 3 kV, Id = 110 mA; 3 – Ud = 3,8 kV, Id = 50 mA (Ud – discharge voltage, Id – discharge current). Processing time was 30 min.For quantitative estimation of surface destruction degree the surface defects density was used which is equal to the ratio of total area of defects within the region under consideration to entire area. Defects area was calculated using the microphotography of treated surface.The investigations have shown that the defects occurred as microscopic chips in all operation conditions of treatment. The defects density distribution corresponds to ion current distribution on the sample surface. With increasing ion current power density a size of defects has grown and their amount has increased. With the constant power density an increasing acceleration voltage results in decreasing density of defects. It was shown that a process of appearing defects is of the threshold nature. For each accelerated voltage there is a power density at which defects do not appear. The work results may be useful to choose the ion beam processing operation conditions in manufacturing large-scale optics.</p
    corecore