3,013 research outputs found

    Dynamics of the Universal Confining String Theory on the Loop Space

    Get PDF
    Starting with the representation of the Wilson average in the Euclidean 4D compact QED as a partition function of the Universal Confining String Theory, we derive for it the corresponding loop equation, alternative to the familiar one. In the functional momentum representation the obtained equation decouples into two independent ones, which describe the dynamics of the transverse and longitudinal components of the area derivative of the Wilson loop. At some critical value of the momentum discontinuity, which can be determined from a certain equation, the transverse component does not propagate. Next, we derive the equation for the momentum Wilson loop, where on the left-hand side stands the sum of the squares of the momentum discontinuities, multiplied by the loop, which describes its free propagation, while the right-hand side describes the interaction of the loop with the functional vorticity tensor current. Finally, using the method of inversion of the functional Laplacian, we obtain for the Wilson loop in the coordinate representation a simple Volterra type-II linear integral equation, which can be treated perturbatively.Comment: 7 pages, LaTeX, no figures, a remark is adde

    Gluodynamics String as a Low-Energy Limit of the Universal Confining String Theory

    Full text link
    An effective string theory emerging from the bilocal approximation to the Method of Vacuum Correlators in gluodynamics is shown to be well described by the 4D theory of the massive Abelian Kalb-Ramond field interacting with the string, which is known to be the low-energy limit of the Universal Confining String Theory. The mass of the Kalb-Ramond field in this approach plays the role of the inverse correlation length of the vacuum, and it is shown that in the massless limit string picture disappears. The background field method, known in the theory of nonlinear sigma models, is applied to derivation of the effective action, quadratic in quantum fluctuations around a given (e.g. minimal) string world-sheet.Comment: 11 pages, LaTeX, no figures, 2 references are updated, to be published in Phys. Lett.

    Stochastic loop equations

    Full text link
    Stochastic quantization is applied to derivation of the equations for the Wilson loops and generating functionals of the Wilson loops in the large-N limit. These equations are treated both in the coordinate and momentum representations. In the first case the connection of the suggested approach with the problem of random closed contours and supersymmetric quantum mechanics is established, and the equation for the Quenched Master Field Wilson loop is derived. The regularized version of one of the obtained equations is presented and applied to derivation of the equation for the bilocal field correlator. The momentum loop dynamics is also investigated.Comment: 13 page

    String Representation for the 't Hooft Loop Average in the Abelian Higgs Model

    Full text link
    Making use of the duality transformation, we derive in the Londons' limit of the Abelian Higgs Model string representation for the 't Hooft loop average defined on the string world-sheet, which yields the values of two coefficient functions parametrizing the bilocal correlator of the dual field strength tensors. The asymptotic behaviours of these functions agree with the ones obtained within the Method of Vacuum Correlators in QCD in the lowest order of perturbation theory. We demonstrate that the bilocal approximation to the Method of Vacuum Correlators is an exact result in the Londons' limit, i.e. all the higher cumulants in this limit vanish. We also show that at large distances, apart from the integration over metrics, the obtained string effective theory (which in this case reduces to the nonlinear massive axionic sigma model) coincides with the low-energy limit of the dual version of 4D compact QED, the so-called Universal Confining String Theory. We derive string tension of the Nambu-Goto term and the coupling constant of the rigidity term for the obtained string effective theory and demonstrate that the latter one is always negative, which means the stability of strings, while the positiveness of the former is confirmed by the present lattice data. These data enable us to find the Higgs boson charge and the vacuum expectation value of the Higgs field, which model QCD best of all. We also study dynamics of the weight factor of the obtained string representation for the 't Hooft average in the loop space. In conclusion, we obtain string representation for the partition function of the correlators of an arbitrary number of Higgs currents, by virtue of which we rederive the structure of the bilocal correlator of the dual field strength tensors, which yields the surface term in the string effective action.Comment: 11 pages, LaTeX, no figures, references are adde
    corecore