657 research outputs found

    Direct Detection of the Brown Dwarf GJ 802B with Adaptive Optics Masking Interferometry

    Get PDF
    We have used the Palomar 200" Adaptive Optics (AO) system to directly detect the astrometric brown dwarf GJ 802B reported by Pravdo et al. 2005. This observation is achieved with a novel combination of aperture masking interferometry and AO. The dynamical masses are 0.175±\pm0.021 M⊙_\odot and 0.064±\pm0.032 M⊙_\odot for the primary and secondary respectively. The inferred absolute H band magnitude of GJ 802B is MH_H=12.8 resulting in a model-dependent Teff_\mathrm{eff} of 1850 ±\pm 50K and mass range of 0.057--0.074 M⊙_\odot.Comment: 4 Pages, 5 figures, emulateapj format, submitted to ApJ

    High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    Full text link
    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.Comment: 8 pages, 8 figures, Accepted by MNRA

    High Angular Resolution Mid-infrared Imaging of Young Stars in Orion BN/KL

    Full text link
    We present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3-0.5" resolution from 4.7 to 22 microns. The young stellar objects designated infrared source-n and radio source-I are believed to dominate the BN/KL region. We have detected extended emission from a probable accretion disk around source-n but infer a stellar luminosity on the order of only 2000 Lsun. Although source-I is believed to be more luminous, we do not detect an infrared counterpart even at the longest wavelengths. However, we resolve the closeby infrared source, IRc2, into an arc of knots ~1000 AU long at all wavelengths. Although the physical relation of source-I to IRc2 remains ambiguous, we suggest these sources mark a high density core (10^7-10^8 pc^-3 over 1000 AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. We suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.Comment: 13 pages including 3 color figures. Accepted to The Astrophysical Journal Letters pending slight reduction in length. High resolution figures (jpeg) may be found at http://cfa-www.harvard.edu/~lincoln/keck.bnkl.midir.ppr
    • …
    corecore