58 research outputs found

    Tetramer Orbital-Ordering induced Lattice-Chirality in Ferrimagnetic, Polar MnTi2O4

    Full text link
    Using density-functional theory calculations and experimental investigations on structural, magnetic and dielectric properties, we have elucidated a unique tetragonal ground state for MnTi2O4, a Ti^{3+} (3d^1)-ion containing spinel-oxide. With lowering of temperature around 164 K, cubic MnTi2O4 undergoes a structural transition into a polar P4_1 tetragonal structure and at further lower temperatures, around 45 K, the system undergoes a paramagnetic to ferrimagnetic transition. Magnetic superexchange interactions involving Mn and Ti spins and minimization of strain energy associated with co-operative Jahn-Teller distortions plays a critical role in stabilization of the unique tetramer-orbital ordered ground state which further gives rise to lattice chirality through subtle Ti-Ti bond-length modulations

    A microspectroscopic study of the electronic homogeneity of ordered and disordered Sr2FeMoO6

    Full text link
    Besides a drastic reduction in saturation magnetization of disordered Sr2FeMoO6 compared to highly ordered samples, magnetizations as a function of the temperature for different disordered samples may also show qualitatively different behaviors. We investigate the origin of such diversity by performing spatially resolved photoemission spectroscopy on various disordered samples. Our results establish that extensive electronic inhomogeneity, arising most probably from an underlying chemical inhomogeneity in disordered samples is responsible for the observed magnetic inhomogeneity. It is further pointed out that these inhomogeneities are connected with composition fluctuations of the type Sr2Fe1+xMo1-xO6 with Fe-rich (x>0) and Mo-rich (x<0) regions.Comment: 14 pages, 4 figure

    Pressure and alloying effects on the metal to insulator transition in NiS{2-x}Se{x} studied by infrared spectroscopy

    Full text link
    The metal to insulator transition in the charge transfer NiS{2-x}Se{x} compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se-alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs Pressure scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.Comment: Accepted for publication in Phys. Rev.

    Band Structure of Topological Insulator BiSbTe1.25Se1.75

    Full text link
    We present our angle resolved photoelectron spectroscopy (ARPES) and density functional theory results on quaternary topological insulator (TI) BiSbTe1.25Se1.75 (BSTS) confirming the non-trivial topology of the surface state bands (SSBs) in this compound. We find that the SSBs, which are are sensitive to the atomic composition of the terminating surface have a partial 3D character. Our detailed study of the band bending (BB) effects shows that in BSTS the Dirac point (DP) shifts by more than two times compared to that in Bi2Se3 to reach the saturation. The stronger BB in BSTS could be due to the difference in screening of the surface charges. From momentum density curves (MDCs) of the ARPES data we obtained an energy dispersion relation showing the warping strength of the Fermi surface in BSTS to be intermediate between those found in Bi2Se3 and Bi2Te3 and also to be tunable by controlling the ratio of chalcogen/pnictogen atoms. Our experiments also reveal that the nature of the BB effects are highly sensitive to the exposure of the fresh surface to various gas species. These findings have important implications in the tuning of DP in TIs for technological applications
    corecore