355 research outputs found
Counting Steiner triple systems with classical parameters and prescribed rank
By a famous result of Doyen, Hubaut and Vandensavel \cite{DHV}, the 2-rank of
a Steiner triple system on points is at least , and equality
holds only for the classical point-line design in the projective geometry
. It follows from results of Assmus \cite{A} that, given any integer
with , there is a code containing
representatives of all isomorphism classes of STS with 2-rank at most
. Using a mixture of coding theoretic, geometric, design
theoretic and combinatorial arguments, we prove a general formula for the
number of distinct STS with 2-rank at most contained
in this code. This generalizes the only previously known cases, , proved
by Tonchev \cite{T01} in 2001, , proved by V. Zinoviev and D. Zinoviev
\cite{ZZ12} in 2012, and (V. Zinoviev and D. Zinoviev \cite{ZZ13},
\cite{ZZ13a} (2013), D. Zinoviev \cite{Z16} (2016)), while also unifying and
simplifying the proofs. This enumeration result allows us to prove lower and
upper bounds for the number of isomorphism classes of STS with 2-rank
exactly (or at most) . Finally, using our recent systematic
study of the ternary block codes of Steiner triple systems \cite{JT}, we obtain
analogous results for the ternary case, that is, for STS with 3-rank at
most (or exactly) . We note that this work provides the first
two infinite families of 2-designs for which one has non-trivial lower and
upper bounds for the number of non-isomorphic examples with a prescribed
-rank in almost the entire range of possible ranks.Comment: 27 page
The twisted Grassmann graph is the block graph of a design
In this note, we show that the twisted Grassmann graph constructed by van Dam
and Koolen is the block graph of the design constructed by Jungnickel and
Tonchev. We also show that the full automorphism group of the design is
isomorphic to the full automorphism group of the twisted Grassmann graph.Comment: 5 pages. A section on the automorphism group has been adde
High-rate self-synchronizing codes
Self-synchronization under the presence of additive noise can be achieved by
allocating a certain number of bits of each codeword as markers for
synchronization. Difference systems of sets are combinatorial designs which
specify the positions of synchronization markers in codewords in such a way
that the resulting error-tolerant self-synchronizing codes may be realized as
cosets of linear codes. Ideally, difference systems of sets should sacrifice as
few bits as possible for a given code length, alphabet size, and
error-tolerance capability. However, it seems difficult to attain optimality
with respect to known bounds when the noise level is relatively low. In fact,
the majority of known optimal difference systems of sets are for exceptionally
noisy channels, requiring a substantial amount of bits for synchronization. To
address this problem, we present constructions for difference systems of sets
that allow for higher information rates while sacrificing optimality to only a
small extent. Our constructions utilize optimal difference systems of sets as
ingredients and, when applied carefully, generate asymptotically optimal ones
with higher information rates. We also give direct constructions for optimal
difference systems of sets with high information rates and error-tolerance that
generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication
in the IEEE Transactions on Information Theory. Material presented in part at
the International Symposium on Information Theory and its Applications,
Honolulu, HI USA, October 201
The existence of optimal quaternary [28,20,6] and quantum [[28,12,6]] codes
The existence of a quantum code was one of the few cases for codes of length that was left open in the seminal paper by Calderbank, Rains, Shor, and Sloane \cite{CRSS}. The main result of this paper is the construction of a new optimal linear quaternary code which contains its hermitian dual code and yields an optimal linear quantum code
- β¦