771 research outputs found
Regional price targets appropriate for advanced coal extraction
A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden
Microscopic Theory of Skyrmions in Quantum Hall Ferromagnets
We present a microscopic theory of skyrmions in the monolayer quantum Hall
ferromagnet. It is a peculiar feature of the system that the number density and
the spin density are entangled intrinsically as dictated by the W
algebra. The skyrmion and antiskyrmion states are constructed as W-rotated states of the hole-excited and electron-excited states,
respectively. They are spin textures accompanied with density modulation that
decreases the Coulomb energy. We calculate their excitation energy as a
function of the Zeeman gap and compared the result with experimental data.Comment: 15 pages (to be published in PRB
Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis
We discuss effects of fluctuation geometry on primordial nucleosynthesis. For
the first time we consider condensed cylinder and cylindrical-shell fluctuation
geometries in addition to condensed spheres and spherical shells. We find that
a cylindrical shell geometry allows for an appreciably higher baryonic
contribution to be the closure density (\Omega_b h_{50}^2 \la 0.2) than that
allowed in spherical inhomogeneous or standard homogeneous big bang models.
This result, which is contrary to some other recent studies, is due to both
geometry and recently revised estimates of the uncertainties in the
observationally inferred primordial light-element abundances. We also find that
inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can
lead to significant Be and B production. In particular, a primordial beryllium
abundance as high as [Be] = 12 + log(Be/H) is possible while still
satisfying all of the light-element abundance constraints.Comment: Latex, 20 pages + 11 figures(not included). Entire ps file with
embedded figures available via anonymous ftp at
ftp://genova.mtk.nao.ac.jp/pub/prepri/bbgeomet.ps.g
Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets
The two-dimensional electron gas in a bilayer quantum Hall system can sustain
an interlayer coherence at filling factor nu=1 even in the absence of tunneling
between the layers. This system has low-energy charged excitations which may
carry textures in real spin or pseudospin. Away from filling factor nu =1 a
finite density of these is present in the ground state of the 2DEG and forms a
crystal. Depending on the relative size of the various energy scales, such as
tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b),
these textured crystal states can involve spin, pseudospin, or both
intertwined. In this article, we present a comprehensive numerical study of the
collective excitations of these textured crystals using the GRPA. For the pure
spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a
gapless phonon mode, and a separate Goldstone mode that arises from a broken
U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent
Skyrmions break up, and the resulting state is a meron crystal with 4 gapless
modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has
only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal
and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3)
Skyrmion crystal, we find a U(1) gapless mode in the presence of the
symmetry-breaking fields. In addition, a second mode with a very small gap is
present in the spectrum.Comment: 16 pages and 12 eps figure
`Island Surfing' Mechanism of Electron Acceleration During Magnetic Reconnection
One of the key unresolved problems in the study of space plasmas is to
explain the production of energetic electrons as magnetic field lines
`reconnect' and release energy in a exposive manner. Recent observations
suggest possible roles played by small scale magnetic islands in the
reconnection region, but their precise roles and the exact mechanism of
electron energization have remained unclear. Here we show that secondary
islands generated in the reconnection region are indeed efficient electron
accelerators. We found that, when electrons are trapped inside the islands,
they are energized continuously by the reconnection electric field prevalent in
the reconnection diffusion region. The size and the propagation speed of the
secondary islands are similar to those of islands observed in the magnetotail
containing energertic electrons.Comment: 5 pages, 4 figures, submitted to J. Geophys. Res
Spin gap in the 2D electron system of GaAs/AlGaAs single heterojunctions in weak magnetic fields
We study the interaction-enhanced spin gaps in the two-dimensional electron
gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic
fields. The values are obtained from the chemical potential jumps measured by
magnetocapacitance. The gap increase with parallel magnetic field indicates
that the lowest-lying charged excitations are accompanied with a single spin
flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the
concept of skyrmions.Comment: as publishe
Spectral variability in Cygnus X-3
We model the broad-band X-ray spectrum of Cyg X-3 in all states displayed by
this source as observed by the Rossi X-ray Timing Explorer. From our models, we
derive for the first time unabsorbed spectral shapes and luminosities for the
full range of spectral states. We interpret the unabsorbed spectra in terms of
Comptonization by a hybrid electron distribution and strong Compton reflection.
We study the spectral evolution and compare with other black hole as well as
neutron star sources. We show that a neutron star accretor is not consistent
with the spectral evolution as a function of Ledd and especially not with the
transition to a hard state. Our results point to the compact object in Cyg X-3
being a massive, ~30 Msun black hole.Comment: 14 pages, 9 figures, accepted for publication in MNRA
- …