435 research outputs found
Hippocampus and basal forebrain volumes modulate effects of anticholinergic treatment on delayed recall in healthy older adults
Introduction Volumes of hippocampus and cholinergic basal forebrain are associated with delayed recall performance and may modulate the effect of a muscarinic receptor antagonist on delayed recall in healthy volunteers Methods We studied 15 older adults before and after the oral administration of a single dose of 1 or 2 mg of the preferential M1 muscarinic receptor antagonist trihexyphenidyl (Artane™) or placebo in a double-blind randomized cross-over design. Hippocampus and basal forebrain volumes were measured using magnetic resonance imaging. Results We found a significant interaction between treatment and hippocampus volume and a trend level effect between treatment and anterior basal forebrain volume on task performance, with an attenuation of the association between volume size and performance with trihexyphenidyl. Discussion These findings suggest a reduction of delayed recall performance with increasing doses of the muscarinic antagonist that is related to an uncoupling of the association of task performance with cholinergic basal forebrain and hippocampus volume
The relationship between CSF tau markers, hippocampal volume and delayed primacy performance in cognitively intact elderly individuals.
BACKGROUND: Primacy performance in recall has been shown to predict cognitive decline in cognitively intact elderly, and conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Delayed primacy performance, but not delayed non-primacy performance, has been shown to be associated with hippocampal volume in cognitively intact older individuals. Since presence of neurofibrillary tangles is an early sign of AD-related pathology, we set out to test whether cerebrospinal fluid (CSF) levels of tau had an effect on delayed primacy performance, while controlling for hippocampal volume and CSF Aβ 1-42 levels. METHODS: Forty-seven individuals, 60 or older and cognitively intact, underwent a multi-session study including lumbar puncture, an MRI scan of the head and memory testing. RESULTS: Our regression analyses show that CSF levels of hyperphosphorylated (P) tau are only associated with reduced delayed primacy performance when hippocampal volumes are smaller. CONCLUSION: Our findings suggest that hippocampal size may play a protective role against the negative effects of P tau on memory
Association of CSF sTREM2, a marker of microglia activation, with cholinergic basal forebrain volume in major depressive disorder
BACKGROUND: Inflammatory mechanisms are believed to contribute to the manifestation of major depressive disorder (MDD). Central cholinergic activity may moderate this effect. Here, we tested if volume of the cholinergic basal forebrain is associated with cerebrospinal fluid (CSF) levels of sTREM2 as a marker of microglial activation in people with late life MDD. METHODS: Basal forebrain volume was determined from structural MRI scans and levels of CSF sTREM2 with immunoassay in 29 people with late-life MDD and 20 healthy older controls at baseline and 3 years follow-up. Associations were determined using Bayesian analysis of covariance. RESULTS: We found moderate level of evidence for an association of lower CSF levels of sTREM2 at 3 years follow up with MDD (Bayes factor in favor of an effect = 7.9). This level of evidence prevailed when controlling for overall antidepressant treatment and CSF levels of markers of AD pathology, i.e., Aβ42/Aβ40, ptau181 and total tau. Evidence was in favor of absence of an effect for baseline levels of CSF sTREM2 in MDD cases and for baseline and follow up data in controls. LIMITATIONS: The sample size of repeated CSF examinations was relatively small. Therefore, we used Bayesian sequential analysis to assess if effects were affected by sample size. Still, the number of cases was too small to stratify effects for different antidepressive treatments. CONCLUSIONS: Our data agree with the assumption that central cholinergic system integrity may contribute to regulation of microglia activity in late-life MDD
The Primacy Effect in Amnestic Mild Cognitive Impairment: Associations with Hippocampal Functional Connectivity
Background: The “primacy effect,” i.e., increased memory recall for the first items of a series compared to the following items, is reduced in amnestic mild cognitive impairment (aMCI). Memory task-fMRI studies demonstrated that primacy recall is associated with higher activation of the hippocampus and temporo-parietal and frontal cortical regions in healthy subjects. Functional magnetic resonance imaging (fMRI) at resting state revealed that hippocampus functional connectivity (FC) with neocortical brain areas, including regions of the default mode network (DMN), is altered in aMCI. The present study aimed to investigate whether resting state fMRI FC between the hippocampus and cortical brain regions, especially the DMN, is associated with primacy recall performance in aMCI.
Methods: A number of 87 aMCI patients underwent resting state fMRI and verbal episodic memory assessment. FC between the left or right hippocampus, respectively, and all other voxels in gray matter was mapped voxel-wise and used in whole-brain regression analyses, testing whether FC values predicted delayed primacy recall score. The delayed primacy score was defined as the number of the first four words recalled on the California Verbal Learning Test. Additionally, a partial least squares (PLS) analysis was performed, using DMN regions as seeds to identify the association of their functional interactions with delayed primacy recall.
Results: Voxel-based analyses indicated that delayed primacy recall was mainly (positively) associated with higher FC between the left and right hippocampus. Additionally, significant associations were found for higher FC between the left hippocampus and bilateral temporal cortex, frontal cortical regions, and for higher FC between the right hippocampus and right temporal cortex, right frontal cortical regions, left medial frontal cortex and right amygdala (p < 0.01, uncorr.). PLS analysis revealed positive associations of delayed primacy recall with FC between regions of the DMN, including the left and right hippocampus, as well as middle cingulate cortex and thalamus (p < 0.04). In conclusion, in the light of decreased hippocampus function in aMCI, inter-hemispheric hippocampus FC and hippocampal FC with brain regions predominantly included in the DMN may contribute to residual primacy recall in aMCI
Direct Imaging of Coexisting Ordered and Frustrated Sublattices in Artificial Ferromagnetic Quasicrystals
We have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins
Neuronal correlates of serial position performance in amnestic mild cognitive impairment.
Objectives:
Delayed recall of the first words of a list - the primacy position – is thought to be particularly dependent on intact memory consolidation. Hippocampal volume has been suggested as the primary neuronal correlate of delayed primacy recall in cognitively normal elderly individuals. Here, we studied the association of hippocampal volume with primacy recall in individuals with amnestic mild cognitive impairment (aMCI).
Methods:
We investigated serial position performance in 88 subjects with aMCI using a 16-word list (CVLT). Primacy and recency performance were measured during learning and delayed recall. Hippocampal volumes were automatically determined from structural MRI scans. We conducted regression analyses with bilateral hippocampal volumes as predictors and serial position indices as outcomes.
Results:
After controlling for age, gender, and total intracranial volume, bilateral hippocampal volume was not associated with primacy recall either during learning or delayed recall. Primacy performance during learning was associated with the right inferior and middle temporal gyrus as well as the right inferior parietal cortex and supramerginal gyrus. During delayed recall, primacy performance was related to the bilateral supramarginal gyri.
Conclusions:
Our findings suggest a reduced primacy effect in aMCI already during learning, contrasting previous findings in normal cognitive aging. This might indicate impaired encoding and consolidation processes at an early stage of episodic memory acquisition. Furthermore, our data indicates that hippocampal volume may not be a relevant determinant of residual primacy performance in the stage of aMCI, which may rather depend on temporal and parietal neocortical networks
Basal Forebrain Mediated Increase in Brain CRF is Associated with Increased Cholinergic Tone and Depression
Major depression is a devastating disease that generates significant suffering and cost.
After controlling for the main effects of diagnosis and Cerebrospinal Fluid Corticotropin-Releasing Factor (CSF CRF), the interaction between CSF CRF and major depression disorder diagnosis was a significant predictor of basal forebrain cholinergic nuclei volume, but not of hippocampal volume.
By investigating both markers concurrently in participants with and without depression, we describe the extent to which the interaction between CSF CRF levels and depression diagnosis is associated with the volume of the forebrain cholinergic nuclei and of the hippocampus.
These results contribute to our understanding of the role of brain’s stress axis in depression
Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data
Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample
Robust Detection of Impaired Resting State Functional Connectivity Networks in Alzheimer's Disease Using Elastic Net Regularized Regression
The large number of multicollinear regional features that are provided by resting state (rs) fMRI data requires robust feature selection to uncover consistent networks of functional disconnection in Alzheimer's disease (AD). Here, we compared elastic net regularized and classical stepwise logistic regression in respect to consistency of feature selection and diagnostic accuracy using rs-fMRI data from four centers of the German resting-state initiative for diagnostic biomarkers (psymri.org), comprising 53 AD patients and 118 age and sex matched healthy controls. Using all possible pairs of correlations between the time series of rs-fMRI signal from 84 functionally defined brain regions as the initial set of predictor variables, we calculated accuracy of group discrimination and consistency of feature selection with bootstrap cross-validation. Mean areas under the receiver operating characteristic curves as measure of diagnostic accuracy were 0.70 in unregularized and 0.80 in regularized regression. Elastic net regression was insensitive to scanner effects and recovered a consistent network of functional connectivity decline in AD that encompassed parts of the dorsal default mode as well as brain regions involved in attention, executive control, and language processing. Stepwise logistic regression found no consistent network of AD related functional connectivity decline. Regularized regression has high potential to increase diagnostic accuracy and consistency of feature selection from multicollinear functional neuroimaging data in AD. Our findings suggest an extended network of functional alterations in AD, but the diagnostic accuracy of rs-fMRI in this multicenter setting did not reach the benchmark defined for a useful biomarker of AD
Simple top-down preparation of magnetic BiGdFeTiO nanoparticles by ultrasonication of multiferroic bulk material
We present a simple technique to synthesize ultrafine nanoparticles directly
from bulk multiferroic perovskite powder. The starting materials, which were
ceramic pellets of the nominal compositions of
BiGdFeTiO (x = 0.00-0.20), were prepared
initially by a solid state reaction technique, then ground into
micrometer-sized powders and mixed with isopropanol or water in an ultrasonic
bath. The particle size was studied as a function of sonication time with
transmission electron microscopic imaging and electron diffraction that
confirmed the formation of a large fraction of single-crystalline nanoparticles
with a mean size of 11-13 nm. A significant improvement in the magnetic
behavior of BiGdFeTiO nanoparticles compared to
their bulk counterparts was observed at room temperature. This sonication
technique may be considered as a simple and promising route to prepare
ultrafine nanoparticles for functional applications.Comment: 7 pages, 5 figure
- …