164 research outputs found

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k−12k-1 points, also contains at least one point from every color class. We also show that the bound 2k−12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k−14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k−23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k−38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    On infinite-finite duality pairs of directed graphs

    Get PDF
    The (A,D) duality pairs play crucial role in the theory of general relational structures and in the Constraint Satisfaction Problem. The case where both classes are finite is fully characterized. The case when both side are infinite seems to be very complex. It is also known that no finite-infinite duality pair is possible if we make the additional restriction that both classes are antichains. In this paper (which is the first one of a series) we start the detailed study of the infinite-finite case. Here we concentrate on directed graphs. We prove some elementary properties of the infinite-finite duality pairs, including lower and upper bounds on the size of D, and show that the elements of A must be equivalent to forests if A is an antichain. Then we construct instructive examples, where the elements of A are paths or trees. Note that the existence of infinite-finite antichain dualities was not previously known

    Photometric single-view dense 3D reconstruction in endoscopy

    Get PDF
    Visual SLAM inside the human body will open the way to computer-assisted navigation in endoscopy. However, due to space limitations, medical endoscopes only provide monocular images, leading to systems lacking true scale. In this paper, we exploit the controlled lighting in colonoscopy to achieve the first in-vivo 3D reconstruction of the human colon using photometric stereo on a calibrated monocular endoscope. Our method works in a real medical environment, providing both a suitable in-place calibration procedure and a depth estimation technique adapted to the colon's tubular geometry. We validate our method on simulated colonoscopies, obtaining a mean error of 7% on depth estimation, which is below 3 mm on average. Our qualitative results on the EndoMapper dataset show that the method is able to correctly estimate the colon shape in real human colonoscopies, paving the ground for truescale monocular SLAM in endoscopy

    NR-SLAM: Non-Rigid Monocular SLAM

    Full text link
    In this paper we present NR-SLAM, a novel non-rigid monocular SLAM system founded on the combination of a Dynamic Deformation Graph with a Visco-Elastic deformation model. The former enables our system to represent the dynamics of the deforming environment as the camera explores, while the later allows us to model general deformations in a simple way. The presented system is able to automatically initialize and extend a map modeled by a sparse point cloud in deforming environments, that is refined with a sliding-window Deformable Bundle Adjustment. This map serves as base for the estimation of the camera motion and deformation and enables us to represent arbitrary surface topologies, overcoming the limitations of previous methods. To assess the performance of our system in challenging deforming scenarios, we evaluate it in several representative medical datasets. In our experiments, NR-SLAM outperforms previous deformable SLAM systems, achieving millimeter reconstruction accuracy and bringing automated medical intervention closer. For the benefit of the community, we make the source code public.Comment: 12 pages, 7 figures, submited to the IEEE Transactions on Robotics (T-RO

    New and simple algorithms for stable flow problems

    Get PDF
    Stable flows generalize the well-known concept of stable matchings to markets in which transactions may involve several agents, forwarding flow from one to another. An instance of the problem consists of a capacitated directed network, in which vertices express their preferences over their incident edges. A network flow is stable if there is no group of vertices that all could benefit from rerouting the flow along a walk. Fleiner established that a stable flow always exists by reducing it to the stable allocation problem. We present an augmenting-path algorithm for computing a stable flow, the first algorithm that achieves polynomial running time for this problem without using stable allocation as a black-box subroutine. We further consider the problem of finding a stable flow such that the flow value on every edge is within a given interval. For this problem, we present an elegant graph transformation and based on this, we devise a simple and fast algorithm, which also can be used to find a solution to the stable marriage problem with forced and forbidden edges. Finally, we study the stable multicommodity flow model introduced by Kir\'{a}ly and Pap. The original model is highly involved and allows for commodity-dependent preference lists at the vertices and commodity-specific edge capacities. We present several graph-based reductions that show equivalence to a significantly simpler model. We further show that it is NP-complete to decide whether an integral solution exists

    Recognizing hyperelliptic graphs in polynomial time

    Get PDF
    Recently, a new set of multigraph parameters was defined, called "gonalities". Gonality bears some similarity to treewidth, and is a relevant graph parameter for problems in number theory and multigraph algorithms. Multigraphs of gonality 1 are trees. We consider so-called "hyperelliptic graphs" (multigraphs of gonality 2) and provide a safe and complete sets of reduction rules for such multigraphs, showing that for three of the flavors of gonality, we can recognize hyperelliptic graphs in O(n log n+m) time, where n is the number of vertices and m the number of edges of the multigraph.Comment: 33 pages, 8 figure

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets
    • 

    corecore