38 research outputs found
High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry
The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation, with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives, natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless, natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue, considering compressed gases, and presents an innovative solution, which has been developed in the European project GASVESSEL\uae that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping, a case study of a small Roll-on/Roll-off passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells, fuelled by hydrogen. In particular, a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board, taking into account boundary conditions such as filling time, on shore storage capacity and cylinder wall temperature. The simulation results show that, if the fuel cells system is run continuously at steady state, to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system, assessed on the basis of the containment system outer dimensions, is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders, the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out, as expected, that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless, for specific application such as the one considered in the paper, the introduction of gaseous hydrogen as fuel, can be considered for implementing zero local emission propulsion system in the medium term
The role of hydrogen as enabler of industrial port area decarbonization
To meet environmental goals while maintaining economic competitiveness, worldwide ports have increased the amount of renewable energy production and have focused in optimizing performances and energy efficiency. However, carbon-neutral operation of industrial port areas (IPA) is challenging and requires the decarbonization of industrial processes and heavy transport systems. This study proposes a comprehensive review of decarbonization strategies for IPA, with a particular focus on the role that green hydrogen could play when used as renewable energy carrier. Much information on existing and future technologies was also derived from the analysis of 74 projects (existing and planned) in 36 IPAs, 80 % of which are in Europe, concerning hydrogen-based decarbonization strategies. The overall review shows that engine operation of ships at berth are responsible of more than 70 % of emissions in ports. Therefore, onshore power supply (OPS) seems to be one of the main strategies to reduce port pollution. Nevertheless, OPS powered by hydrogen is not today easily achievable. By overcoming the current cost-related and regulation barriers, hydrogen can also be used for the import/export of green energy and the decarbonization of hard-to-abate sectors. The technical and economic data regarding hydrogen-based technologies and strategies highlighted in this paper are useful for further research in the field of definition and development of decarbonization strategies in the IPA
Thermodynamic analysis of a Carbon Carrier Cycle (CCC) for low temperature heat recovery
The aim of the paper is to study the thermodynamic behavior of a non-conventional power cycle, named Carbon Carrier Cycle (CCC), which is expected to obtain interesting performance with low temperature heat source. The CCC may be regarded as derived from an absorption machine, where an expander replaces the condenser, the throttling valve and the evaporator. The working fluid is a mixture of CO2 and a proper absorber. In the paper, the thermodynamic model of this kind of cycles is described, and the results obtained considering Acetone as the absorber are discussed. A first performance comparison is then conducted with a more conventional Organic Rankine Cycle (ORC)
Experimental Test Facility for the Analysis of Transient Behaviour of High Temperature Fuel Cell/Gas Turbine Hybrid Power Plants
2Pressurised high temperature fuel cells and gas turbine integrated power systems are receiving a growing attention as capable of reaching very high electrical conversion efficiency even in small size power plants. In this system the fuel and the oxidant (air) enter the cell after being compressed. The fuel oxidation reaction occurs predominantly within the fuel cell. The reaction is completed in a combustion chamber and the pressurised combustion products are exhausted through a turbine. The dynamic interdependences related to the integration of the fuel cell and the gas turbine are not completely understood and unexpected complications and dangers might arise. In fact as a consequence of both the relatively large volume of the pressurized portion of the plant and the shape of the stalled characteristic of available compressors, the plant could be affected by the inception of fluid-dynamic instabilities. In particular surge could be detected in the transient off-design operational conditions occurring during plant regulation, start up and shut down.
The paper presents a new experimental fuel cell gas turbine simulation facility that has been constructed at the Mechanical Engineering Department of the University of Trieste, Italy. The facility was designed to examine the effects of transient events on the dynamics of these systems. The theoretical analysis of the plant is completed using a dynamic model of the system purposely developed.nonemixedTACCANI R; MICHELI D.Taccani, Rodolfo; Micheli, Dieg
Multiple Expansion ORC for Small Scale \u2013 Low Temperature Heat Recovery
ORCs are widely recognized as one of the most suitable solution for energy recovery, if the temperature of the heat source is of about 200\ub0C, or lower. In case of heat sources of about 100 kW or smaller, the more common solutions prescribe a simple cycle and a single stage expander, in order to reduce complexity and costs. Scroll expanders, derived from scroll compressors, are expected to be available at very low unit costs. The drawbacks of this kind of solutions, originally designed for automotive, or HVAC applications, are mainly two: the low fixed volumetric expansion ratio and the small volumetric flow rate, that are not always well-suited for the requirements of power production. In this paper, different ORCs with multiple expansions are evaluated with the aim of achieving a better exploitation of small scale-low temperature waste heat sources. The comparison takes in consideration different possible solutions for the multiple expansions, with internally recuperated and not-recuperated cycles, whilst the data describing the actual behaviour of compressors derived scroll expanders have been previously obtained by a test rig, set up at the University of Trieste, using R245fa as working fluid
Multi-objective optimization of hybrid PEMFC/Li-ion battery propulsion systems for small and medium size ferries
Hybrid Polymer Electrolyte Membrane Fuel Cells/Lithium-ion battery powertrains are a promising solution for zero-local-emissions marine propulsion. The present study aims to optimize the design and operation of such hybrid powertrain for small-size passenger ferries, taking into account the performance degradation of both fuel cells and batteries. A Mixed-Integer Linear-Programming approach and a hierarchical method are adopted to concurrently minimize the fuel cells degradation, the capital expenditure and the operating expenditure, while constraints are included in the model to limit the battery degradation. The results show that the proposed multi-objective optimization can lead to a reduction of fuel cells degradation by up to 65% compared to a cost-minimization only. However, this can imply an increase in the battery capacity by up to 136%. The proposed method has general validity, and it is a useful tool for both preliminary design and choice of the optimal energy management strategy for ships energy systems
Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry
In the path towards the decarbonization of the maritime sector, Low Temperature Polymer Electrolyte Membrane Fuel Cells (LT-PEMFC) fed by hydrogen are gaining attention as they could guarantee zero local emissions propulsion. In this study, a process simulation model is implemented to analyze the influence of peak shaving in a hybrid LT-PEMFC/lithium-ion battery power plant for the propulsion of a small size RoRo car and passenger ferry in different operative conditions. Results show that battery peak shaving could allow a reduction of FC installed power of up to 72%. As for compressed H2 storage, the results show that for sailing time in the range of 5\u201310 min, Type I cylinders at 250 bar are a viable option. For longer routes, Type III cylinders at 350 bar or Type IV cylinders at 700 bar should be considered in order to avoid excessive reduction in the pay-load