7,581 research outputs found

    The Peak Brightness and Spatial Distribution of AGB Stars Near the Nucleus of M32

    Get PDF
    The bright stellar content near the center of the Local Group elliptical galaxy M32 is investigated with 0.12 arcsec FWHM H and K images obtained with the Gemini Mauna Kea telescope. Stars with K = 15.5, which are likely evolving near the tip of the asymptotic giant branch (AGB), are resolved to within 2 arcsec of the nucleus, and it is concluded that the peak stellar brightness near the center of M32 is similar to that in the outer regions of the galaxy. Moreover, the projected density of bright AGB stars follows the visible light profile to within 2 arcsec of the nucleus, indicating that the brightest stars are well mixed throughout the galaxy. Thus, there is no evidence for an age gradient, and the radial variations in spectroscopic indices and ultraviolet colors that have been detected previously must be due to metallicity and/or some other parameter. We suggest that either the bright AGB stars formed as part of a highly uniform and coherent galaxy-wide episode of star formation, or they originated in a separate system that merged with M32.Comment: 9 pages of text, 3 figures. ApJ (Letters) in pres

    Fermion Masses and Mixing and CP-Violation in SO(10) Models with Family Symmetries

    Full text link
    Several ideas for solving the problem of fermion mass hierarchy and mixing and specific supersymmetric models that realize it are reviewed. In particular, we discuss many models based on SO(10) in four dimensions combined with a family symmetry to accommodate fermion mass hierarchy and mixing, including the case of neutrinos. These models are compared and various tests that can be used to distinguish these models are suggested. We also include a discussion of a few SO(10) models in higher space-time dimensions.Comment: 66 pages; 5 figures; Submitted to International Journal of Modern Physics A; v2: a few references added; some changes in tex

    Quasiparticles in the Pseudogap Phase of Underdoped Cuprate

    Get PDF
    Recent angle resolved photoemission \cite{yang-nature-08} and scanning tunneling microscopy \cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang \textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.Comment: updated version, 6 pages, 7 figures, 1 table, EPL 86 (2009) 37002 (https://www.epletters.net

    The lack of carbon stars in the Galactic bulge

    Full text link
    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulse - asymptotic giant branch stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is insufficient to explain the rareness of carbon stars in the bulge. We suggest that the large mass loss rate may serve as a controlling factor in the ratio of the number of carbon stars to that of oxygen stars.Comment: 16 pages, 5 figure

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Relaxation of the Dynamical Gluino Phase and Unambiguous Electric Dipole Moments

    Full text link
    We propose a new axionic solution of the strong CP problem with a Peccei-Quinn mechanism using the gluino rather than quarks. The spontaneous breaking of this new global U(1) at 10^{11} GeV also generates the supersymmetry breaking scale of 1 TeV (solving the so-called \mu problem at the same time) and results in the MSSM (Minimal Supersymmetric Standard Model) with R parity conservation. In this framework, electric dipole moments become calculable without ambiguity.Comment: Typos corrected and a footnote added, 10 p
    corecore