307 research outputs found

    Risk factors associated with an outbreak of dengue fever/dengue haemorrhagic fever in Hanoi, Vietnam

    Get PDF
    SUMMARY Dengue fever/dengue haemorrhagic fever (DF/DHF) appears to be emerging in Hanoi in recent years. A case-control study was performed to investigate risk factors for the development of DF/ DHF in Hanoi. A total of 73 patients with DF/DHF and 73 control patients were included in the study. The risk factor analysis indicated that living in rented housing, living near uncovered sewers, and living in a house discharging sewage directly into to ponds were all significantly associated with DF/DHF. People living in rented houses were 2·2 times more at risk of DF/DHF than those living in their own homes [adjusted odds ratio (aOR) 2·2, 95% confidence interval (CI) 1·1-4·6]. People living in an unhygienic house, or in a house discharging sewage directly to the ponds were 3·4 times and 4·3 times, respectively, more likely to be associated with DF/DHF (aOR 3·4, 95% CI 1-11·7; aOR 4·3, 95% CI 1·1-16·9). These results contribute to the understanding of the dynamics of dengue transmission in Hanoi, which is needed to implement dengue prevention and control programmes effectively and efficiently

    Inferring the effective thickness of polyelectrolytes from stretching measurements at various ionic strengths: applications to DNA and RNA

    Full text link
    By resorting to the thick-chain model we discuss how the stretching response of a polymer is influenced by the self-avoidance entailed by its finite thickness. The characterization of the force versus extension curve for a thick chain is carried out through extensive stochastic simulations. The computational results are captured by an analytic expression that is used to fit experimental stretching measurements carried out on DNA and single-stranded RNA (poly-U) in various solutions. This strategy allows us to infer the apparent diameter of two biologically-relevant polyelectrolytes, namely DNA and poly-U, for different ionic strengths. Due to the very different degree of flexibility of the two molecules, the results provide insight into how the apparent diameter is influenced by the interplay between the (solution-dependent) Debye screening length and the polymers' ``bare'' thickness. For DNA, the electrostatic contribution to the effective radius, Δ\Delta, is found to be about 5 times larger than the Debye screening length, consistently with previous theoretical predictions for highly-charged stiff rods. For the more flexible poly-U chains the electrostatic contribution to Δ\Delta is found to be significantly smaller than the Debye screening length.Comment: iopart, 14 pages, 13 figures, to appear in J. Phys.: Condens. Matte

    Soil Erosion Management in Catchments: Identifying Best Bet Options with Farmers' Participation

    Get PDF
    Abstract: Sustaining upland agriculture and food security is very much constrained by continuing land degradation brought by soil erosion in the sloping lands of Asia. With the primary purpose of developing and promoting sustainable and socially acceptable communitybased land management systems through a participatory and interdisciplinary approach, the Management of Soil Erosion Consortium (MSEC) started a project in 1998 with funding from the Asian Development Bank (ADB) and supervised by the International Water Management Institute (IWMI). Representative catchments were selected by using carefully defined criteria and methodological guidelines (IBSRAM, 1997). The baseline information were established through biophysical and socio-economic characterization of the sites. Up to five smaller subcatchments of various land uses were further delineated and instrumented soil erosion and hydrological studies. Monitoring of the socieoeconomic parameters was likewise undertaken. The best bet options were identified in consultation with the farmers. Observations showed the significant influence of land use and catchment size on soil erosion. Smaller and more intensively cultivated catchments yielded relatively higher soil loss Variants of the contour hedgerow farming in combination with soil fertility management, use of improved varieties and livestock integration were the primary interventions identified. Consultation with the farmers helped very much in the identification of the land management options that were introduced. While farmers are aware of soil erosion and its effects, their more active involvement increased their appreciation of looking at a longer time horizon. As they are aware of the declining productivity of their land, they were also interested in improving the fertility of their land. Because their immediate concern are the benefits in the short term, other sources of livelihood must also be explored

    Theory of biopolymer stretching at high forces

    Full text link
    We provide a unified theory for the high force elasticity of biopolymers solely in terms of the persistence length, ξp\xi_p, and the monomer spacing, aa. When the force f>\fh \sim k_BT\xi_p/a^2 the biopolymers behave as Freely Jointed Chains (FJCs) while in the range \fl \sim k_BT/\xi_p < f < \fh the Worm-like Chain (WLC) is a better model. We show that ξp\xi_p can be estimated from the force extension curve (FEC) at the extension x1/2x\approx 1/2 (normalized by the contour length of the biopolymer). After validating the theory using simulations, we provide a quantitative analysis of the FECs for a diverse set of biopolymers (dsDNA, ssRNA, ssDNA, polysaccharides, and unstructured PEVK domain of titin) for x1/2x \ge 1/2. The success of a specific polymer model (FJC or WLC) to describe the FEC of a given biopolymer is naturally explained by the theory. Only by probing the response of biopolymers over a wide range of forces can the ff-dependent elasticity be fully described.Comment: 20 pages, 4 figure

    Non-Markovian polymer reaction kinetics

    Full text link
    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages, 2 figures

    The Association Between Ambient Temperatures and Hospital Admissions Due to Respiratory Diseases in the Capital City of Vietnam

    Get PDF
    This study aimed to examine the short-term effects of ambient temperature on hospital admissions due to respiratory diseases among Hanoi residents. We collected 34,653 hospital admissions for 365 days (November 1, 2017, to November 31, 2018) from two hospitals in Hanoi. A quasi-Poisson regression model with time series analysis was used to explore the temperature-health outcome relationship's overall pattern. The non-linear curve indicated the temperatures with the lowest risk range from 22 degrees (Celcius) to 25 degrees (Celcius). On average, cold temperatures showed a higher risk than hot temperatures across all genders and age groups. Hospital admissions risk was highest at 13 degrees (Celcius) (RR = 1.39; 95% CI = 1.26–1.54) for cold effects and at 33 degrees (Celcius) (RR = 1.21, 95% CI = 1.04–1.39) for the hot effects. Temporal pattern analysis showed that the most effect on respiratory diseases occurred at a lag of 0 days for hot effect and at a lag of 1 day for cold effect. The risk of changing temperature among women and people over 5 years old was higher than other groups. Our results suggest that the risk of respiratory admissions was greatest when the temperature was low. Public health prevention programs should be enhanced to improve public awareness about the health risks of temperature changes, especially respiratory diseases risked by low temperatures

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 μ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
    corecore