9,574 research outputs found

    Single-stage, low-noise, advanced technology fan. Volume 4: Fan aerodynamics. Section 1: Results and analysis

    Get PDF
    Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected

    Study of explosions in the NASA-MSC Vibration and Acoustic Test Facility /VATF/ Final report

    Get PDF
    Damage potential of titanium alloy pressure spheres relative to spacecraft vibration testin

    Chiral molecules split light: Reflection and refraction in a chiral liquid

    Get PDF
    A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes

    Iso-singlet Down Quark Mixing And CP Violation Experiments

    Full text link
    We confront the new physics models with extra iso-singlet down quarks in the new CP violation experimental era with sin(2β)\sin{(2\beta)} and ϵ/ϵ\epsilon'/\epsilon measurements, K+π+ννˉK^+ \to \pi^+ \nu \bar{\nu} events, and xsx_s limits. The closeness of the new experimental results to the standard model theory requires us to include full SM amplitudes in the analysis. In models allowing mixing to a new isosinglet down quark, as in E6_6, flavor changing neutral currents are induced that allow a Z0Z^0 mediated contribution to BBˉB-\bar B mixing and which bring in new phases. In (ρ,η)(\rho,\eta), (xs,sin(γ))(x_s,\sin{(\gamma)}), and (xs,sin(2ϕs))(x_s, \sin{(2\phi_s)}) plots we still find much larger regions in the four down quark model than in the SM, reaching down to η0\eta \approx 0, 0sin(γ)10 \leq \sin{(\gamma)} \leq 1, .75sin(2α)0.15-.75 \leq \sin{(2\alpha)} \leq 0.15, and sin(2ϕs)\sin{(2\phi_s)} down to zero, all at 1σ\sigma. We elucidate the nature of the cancellation in an order λ5\lambda^5 four down quark mixing matrix element which satisfies the experiments and reduces the number of independent angles and phases. We also evaluate tests of unitarity for the 3×33\times3 CKM submatrix.Comment: 14 pages, 16 figures, REVTeX

    Discovery of a Jet-Like Structure at the High Redshift QSO CXOMP J084128.3+131107

    Full text link
    The Chandra Multiwavelength Project (ChaMP) has discovered a jet-like structure associated with a newly recognized QSO at redshift z=1.866. The system was 9.4 arcmin off-axis during an observation of 3C 207. Although significantly distorted by the mirror PSF, we use both a raytrace and a nearby bright point source to show that the X-ray image must arise from some combination of point and extended sources, or else from a minimum of three distinct point sources. We favor the former situation, as three unrelated sources would have a small probability of occurring by chance in such a close alignment. We show that interpretation as a jet emitting X-rays via inverse Compton (IC) scattering on the cosmic microwave background (CMB) is plausible. This would be a surprising and unique discovery of a radio-quiet QSO with an X-ray jet, since we have obtained upper limits of 100 microJy on the QSO emission at 8.46 GHz, and limits of 200 microJy for emission from the putative jet.Comment: 12 pages including 4 figures. Accepted for publication by ApJ Letter

    Searching for the expelled hydrogen envelope in Type I supernovae via late-time H-alpha emission

    Full text link
    We report the first results from our long-term observational survey aimed at discovering late-time interaction between the ejecta of hydrogen-poor Type I supernovae and the hydrogen-rich envelope expelled from the progenitor star several decades/centuries before explosion. The expelled envelope, moving with a velocity of ~10 -- 100 km s1^{-1}, is expected to be caught up by the fast-moving SN ejecta several years/decades after explosion depending on the history of the mass-loss process acting in the progenitor star prior to explosion. The collision between the SN ejecta and the circumstellar envelope results in net emission in the Balmer-lines, especially in H-alpha. We look for signs of late-time H-alpha emission in older Type Ia/Ibc/IIb SNe having hydrogen-poor ejecta, via narrow-band imaging. Continuum-subtracted H-alpha emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb and 3 SN Ia events. Thirty-eight SN sites were observed on at least two epochs, from which three objects (SN 1985F, SN 2005kl, SN 2012fh) showed significant temporal variation in the strength of their H-alpha emission in our DIAFI data. This suggests that the variable emission is probably not due to nearby H II regions unassociated with the SN, and hence is an important additional hint that ejecta-CSM interaction may take place in these systems. Moreover, we successfully detected the late-time H-alpha emission from the Type Ib SN 2014C, which was recently discovered as a strongly interacting SN in various (radio, infrared, optical and X-ray) bands.Comment: 8 pages, 7 figures, accepted in Ap

    A Systematic Review of Music Therapy Practice and Outcomes with Acute Adult Psychiatric In-Patients

    Get PDF
    PMCID: PMC3732280This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Hard X-ray emitting Active Galactic Nuclei selected by the Chandra Multi-wavelength Project

    Full text link
    We present X-ray and optical analysis of 188 AGN identified from 497 hard X-ray (f (2.0-8.0 keV) > 2.7x10^-15 erg cm^-2 s^-1) sources in 20 Chandra fields (1.5 deg^2) forming part of the Chandra Multi-wavelength Project. These medium depth X-ray observations enable us to detect a representative subset of those sources responsible for the bulk of the 2-8 keV Cosmic X-ray Background. Brighter than our optical spectroscopic limit, we achieve a reasonable degree of completeness (77% of X-ray sources with counter-parts r'< 22.5 have been classified): broad emission line AGN (62%), narrow emission line galaxies (24%), absorption line galaxies (7%), stars (5%) or clusters (2%). We find that most X-ray unabsorbed AGN (NH<10^22 cm^-2) have optical properties characterized by broad emission lines and blue colors, similiar to optically-selected quasars from the Sloan Digital Sky Survey but with a slighly broader color distribution. However, we also find a significant population of redder (g'-i'>1.0) AGN with broad optical emission lines. Most of the X-ray absorbed AGN (10^22<NH<10^24 cm^-2) are associated with narrow emission line galaxies, with red optical colors characteristically dominated by luminous, early type galaxy hosts rather than from dust reddening of an AGN. We also find a number of atypical AGN; for instance, several luminous AGN show both strong X-ray absorption (NH>10^22 cm^-2) and broad emission lines. Overall, we find that 81% of X-ray selected AGN can be easily interpreted in the context of current AGN unification models. Most of the deviations seem to be due to an optical contribution from the host galaxies of the low luminosity AGN.Comment: 26 pages; 13 figures (7 color); accepted for publication in the Astrophysical Journa

    The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing

    Get PDF
    We extend the range of predictions of the isosinglet (or vector) down quark model to the fully allowed physical ranges, and also update this with the effect of new physics constraints. We constrain the present allowed ranges of sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing mixing to a new isosinglet down quark (as in E_6) flavor changing neutral currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s, A_{B_s}) plots for the extra isosinglet down quark model which are herein extended to the full physical range, we find new allowed regions that will require experiments on sin(gamma) and/or x_s to verify or to rule out an extra down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure
    corecore