1,182 research outputs found
Hawking Radiation from Fluctuating Black Holes
Classically, black Holes have the rigid event horizon. However, quantum
mechanically, the event horizon of black holes becomes fuzzy due to quantum
fluctuations. We study Hawking radiation of a real scalar field from a
fluctuating black hole. To quantize metric perturbations, we derive the
quadratic action for those in the black hole background. Then, we calculate the
cubic interaction terms in the action for the scalar field. Using these
results, we obtain the spectrum of Hawking radiation in the presence of
interaction between the scalar field and the metric. It turns out that the
spectrum deviates from the Planck spectrum due to quantum fluctuations of the
metric.Comment: 35pages, 4 figure
Lorentz Violating Inflation
We explore the impact of Lorentz violation on the inflationary scenario. More
precisely, we study the inflationary scenario in the scalar-vector-tensor
theory where the vector is constrained to be unit and time like. It turns out
that the Lorentz violating vector affects the dynamics of the chaotic
inflationary model and divides the inflationary stage into two parts; the
Lorentz violating stage and the standard slow roll stage. We show that the
universe is expanding as an exact de Sitter spacetime in the Lorentz violating
stage although the inflaton field is rolling down the potential. Much more
interestingly, we find exact Lorentz violating inflationary solutions in the
absence of the inflaton potential. In this case, the inflation is completely
associated with the Lorentz violation. We also mention some consequences of
Lorentz violating inflation which can be tested by observations.Comment: 7 pages, 1 figur
Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation
We study higher curvature corrections to the scalar spectral index, the
tensor spectral index, the tensor-to-scalar ratio, and the polarization of
gravitational waves. We find that the higher curvature corrections can not be
negligible in the dynamics of the scalar field, although they are energetically
negligible. Indeed, it turns out that the tensor-to-scalar ratio could be
enhanced and the tensor spectral index could be blue due to the Gauss-Bonnet
term. We estimate the degree of circular polarization of gravitational waves
generated during the slow-roll inflation. We argue that the circular
polarization can be observable with the help both of the Gauss-Bonnet and
parity violating terms. We also present several examples to reveal
observational implications of higher curvature corrections for chaotic
inflationary models.Comment: 12 pages, 4 figure
Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime
We present comparative studies of the orientation effect of a strong magnetic
field on the interlayer resistance of -(BEDT-TTF)KHg(SCN)
samples characterized by different crystal quality. We find striking
differences in their behavior which is attributed to the breakdown of the
coherent charge transport across the layers in the lower quality sample. In the
latter case, the nonoscillating magnetoresistance background is essentially a
function of only the out-of-plane field component, in contradiction to the
existing theory.Comment: 4 pges, 3 figure
Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-
Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na
de-intercalation from alpha-NaCoO2 and by the floating-zone method,
respectively. It has been found that successive phase transitions take place at
temperatures Tc1 and Tc2 in both systems. The appearance of the internal
magnetic field at Tc1 with decreasing temperature T indicates that the
antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For
beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined
from the data taken for magnetically ordered state are similar to those of
gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the
CoO2 layers between these systems do not significantly affect their physical
properties. For gamma-K0.5CoO2, the quantitative difference of the physical
quantities are found from those of beta- and gamma-Na0.5CoO2. The difference
between the values of Tci (i = 1 and 2) of these systems might be explained by
considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl
Spherically symmetric scalar field collapse in any dimension
We describe a formalism and numerical approach for studying spherically
symmetric scalar field collapse for arbitrary spacetime dimension d and
cosmological constant Lambda. The presciption uses a double null formalism, and
is based on field redefinitions first used to simplify the field equations in
generic two-dimensional dilaton gravity. The formalism is used to construct
code in which d and Lambda are input parameters. The code reproduces known
results in d = 4 and d = 6 with Lambda = 0. We present new results for d = 5
with zero and negative Lambda.Comment: 16 pages, 6 figures, typos corrected, presentational changes, PRD in
pres
Inhomogeneity of Spatial Curvature for Inflation
We study how the initial inhomogeneities of the spatial curvature affect the
onset of inflation in the closed universe. We consider a cosmological model
which contains a radiation and a cosmological constant. In order to treat the
inhomogeneities in the closed universe, we improve the long wavelength
approximation such that the non-small spatial curvature is tractable in the
lowest order. Using the improved scheme, we show how large inhomogeneities of
the spatial curvature prevent the occurrence of inflation.Comment: 17 pages, revtex, 6 figures included using eps
On the Perturbative Solutions of Bohmian Quantum Gravity
In this paper we have solved the Bohmian equations of quantum gravity,
perturbatively. Solutions up to second order are derived explicitly, but in
principle the method can be used in any order. Some consequences of the
solution are disscused.Comment: 14 Pages, RevTeX. To appear in Phys. Rev.
- …