196 research outputs found
Long-term, continuous air quality monitoring in a cross-sectional study of three UK non-domestic buildings
Long-term, continuous air quality monitoring has been carried out alongside seasonal passive sampling within a case study a hospital, school and office building, representing a cross-section of the UK non-domestic sector. This approach aimed at adopting state of the art sensor technology to provide a greater understanding of the variations in indoor air quality over time and how these variations relate to both building operation and occupant behavior. The results highlight how the relationship between indoor and outdoor air evolves considerably on both short and long-term basis, with varying behaviors then seen across different sources of pollutants. The mechanically ventilated hospital and school buildings demonstrate the effectiveness of particulate filters, with very low internal concentrations of PM2.5. However, high ventilation rates, combined with the absence of any filtration of NO2, resulted in the hospital having the highest indoor concentrations of NO2 and the highest associated indoor-outdoor ratio. Morning and evening traffic related peaks in NO2 can be observed indoors, with their penetration dependent upon the delivered ventilation rates. This demonstrates the impact of adopting high ventilation rates during peak traffic, and the consequences of CO2 based demand-controlled ventilation systems in polluted urban areas without full filtration. The naturally ventilated office then demonstrates significant seasonal variations, with increased ventilation openings resulting in indoor NO2 concentrations in the summer exceeding those in the winter, despite significant reductions in ambient levels. Conversely, concentrations of indoor pollutants are seen to reduce with increasing ventilation rates, demonstrating the complex balance between the dilution of indoor pollutants and penetration of outdoor sources. Despite significant reductions from the winter to the summer (21.6–11.2 μg/m3), all formaldehyde measurements in the naturally ventilated office exceeded guideline values, indicating improved guidance and product labelling schemes may be required to achieve these guideline concentrations and reduce associated health risks
Towards a framework to evaluate the ‘total’ performance of buildings
Internationally, buildings are a major contributor to carbon emissions. Despite significant advances in the technology and construction of energy-efficient buildings, in many cases a performance gap between designed and actual performance exists. While much research has investigated the drivers of the building energy performance gap – both static and transient– there has been considerably less research into the total performance gap, defined here as performance gaps in building energy use, occupant satisfaction and Indoor Environmental Quality parameters such as thermal comfort and air quality which may impact on occupant health and wellbeing. This paper presents a meta-analysis of building performance data from buildings in the UK and China – selected due to their contrasting development environments – which illustrate the presence of and complexities of evaluating total performance gaps in both countries. The data demonstrate the need for (1) high end-use, spatial granularity and temporal resolution data for both energy and Indoor Environmental Quality, and (2) developing methodologies that allow meaningful comparisons between buildings internationally to facilitate learning from successful building design, construction methodologies and policy environments internationally. Using performance data from a UK building, a potential forward path is illustrated with the objective of developing a framework to evaluate total building performance.
Practical application: While much research has examined building energy performance gaps, Indoor Environmental Quality and occupant satisfaction gaps are rarely included despite their relationship to energy. We use a meta-analysis of energy, indoor environmental quality, and occupant satisfaction data from buildings in the UK and China to illustrating the presence of and complexities of evaluating total performance gaps for buildings in the two countries, and the need for high resolution dynamic buildings data and novel methodologies for comparison between buildings across different contexts. Illustrative case studies are used to demonstrate potential future directions for evaluating ‘total’ building performance
Design and operational strategies for good Indoor Air Quality in low-energy dwellings: performance evaluation of two apartment blocks in East London, UK
To achieve stringent energy objectives, new dwellings are subject to energy conservation
measures including low air permeability and high levels of insulation. Mechanical Ventilation
with Heat Recovery (MVHR) can be used to control the balance between energy efficiency
and Indoor Air Quality (IAQ) in these buildings. This paper evaluates the effectiveness of the
design and operational strategies adopted in a new development comprising two apartment
blocks in East London. The findings point to significant gaps in operational energy use
compared against design projections, and high concentrations in benzene and formaldehyde
three years after construction. It is suggested that a combination of internal source control
measures at design stage and building fine-tuning in early stages of post-occupancy is
necessary to close the performance gap in energy and IAQ
Bridging the Gap: the need for a systems thinking approach in understanding and addressing energy and environmental performance in buildings
Innovations in materials, construction techniques and technologies in building construction and refurbishment aim to reduce carbon emissions and produce low-energy buildings. However, in-use performance consistently misses design specifications, particularly those of operational energy use and indoor environmental quality. This performance gap risks reducing design, technology, sustainability, economic, health and well-being benefits. In this paper, we compare settings of the Chinese and the UK buildings sectors and relate their historical context, design, construction and operation issues impacting energy performance, indoor environmental quality, occupant health and well-being. We identify a series of key, common factors of ‘total’ building performance across these two settings: the application of building regulations, the balance between building cost and performance, skills, construction and operation. The dynamic and complex interactions of these factors are currently poorly understood and lead to building performance gaps. We contend that a systems approach in the development of suitable building assessment methods, technologies and tools could enable the formulation and implementation of more effective policies, regulations and practices. The paper illustrates the application of the approach to the UK and Chinese settings. A full application of a systems approach may help to provide a more dynamic understanding of how factor interactions impact the ‘total’ building performance gaps and help address its multiple causes
Building Performance Evaluation of a New Hospital Building in the UK: Balancing Indoor Environmental Quality and Energy Performance
Hospitals are controlled yet complex ecosystems which provide a therapeutic
environment that promotes healing, wellbeing and work efficiency for patients and staff. As these
buildings accommodate the sick and vulnerable, occupant wellbeing and good indoor
environmental quality (IEQ) that deals with indoor air quality (IAQ), thermal comfort, lighting and
acoustics are important objectives. As the specialist nature of hospital function demands highly
controlled indoor environments, this makes them energy intensive buildings due to the complex
and varying specifications for their functions and operations. This paper reports on a holistic
building performance evaluation covering aspects of indoor air quality, thermal comfort, lighting,
acoustics, and energy use. It assesses the performance issues and inter-relationships between IEQ
and energy in a new building on a hospital campus in the city of Bristol, United Kingdom. The
empirical evidence collated from this case study and the feedback received from the hospital staff
help identify the endemic issues and constraints related to hospital buildings, such as the need for
robust ventilation strategies in hospitals in urban areas that mitigate the effect of indoor and
outdoor air pollution and ensuring the use of planned new low-carbon technologies. Whilst the
existing guidelines for building design provide useful instructions for the protection of hospital
buildings against ingress of particulate matter from outdoors, more advanced filtration strategies
may be required to enact chemical reactions required to control the concentration levels of
pollutants such as nitrogen dioxide and benzene. Further lessons for improved performance in
operation and maintenance of hospitals are highlighted. These include ensuring that the
increasingly available metering and monitoring data in new buildings, through building
management systems, is used for efficient and optimal building operations for better IEQ and
energy management. Overall, the study highlights the need for an integrated and holistic approach
to building performance to ensure that healthy environments are provided while energy efficiency
targets are me
Total energy and environmental performance of low carbon buildings: a cross sectoral study
This paper reports on the key findings of performance evaluations of eight new-build
and newly refurbished buildings in four sectors: Offices, Schools, Hospitals, and
Apartment blocks. Energy performances of these buildings are compared against the
available design estimations and good practice benchmarks. Thermal comfort and
indoor air quality in these buildings have also been analysed to provide a holistic
view of total energy and environmental performance. The performance of the building
with the least energy use suggests that a performance contract can be effective if it
addresses both energy and Indoor Environmental Quality (IEQ). Other improvement
opportunities identified include optimisation of ventilation control, performance
measurement and verification of low carbon systems, and provisions for inspection
and maintenance of advanced mechanical ventilation systems in low-energy
dwellings
Seasonal variations and the influence of ventilation rates on IAQ: A case study of five low-energy London apartments
The indoor air quality (IAQ) of five low-energy London apartments has been assessed through the measurement of 16 key pollutants, using continuous and diffusive methods across heating and non-heating seasons. This case study approach aimed to assess the presence of pollutants within low-energy apartments and to better understand the role of ventilation and seasonal variations in indoor air quality. The results indicate strong seasonal variations, driven by increased natural ventilation rates over the summer monitoring period. A combined metric for indoor and outdoor pollutants ( Itot) suggests that the IAQ in the winter ( Itot = 17.7) is more than twice as bad as that seen in the summer ( Itot = 8.6). Formaldehyde concentrations were lower in the non-heating season, indicating increased ventilation rates more than offset increased off-gassing, in contrast to findings in other studies. However, increased summertime ventilation rates were observed to increase the proportion of outdoor pollutants entering the internal environment. This resulted in higher indoor concentrations of NO2 in the summer than the winter, despite significant reductions in outdoor concentrations. These results demonstrate the impact of ventilation practices upon IAQ, the influence of occupant actions and the complex relationship ventilation rates play in balancing indoor and outdoor sources of air pollution. </jats:p
Building performance evaluation: Balancing energy and indoor environmental quality in a UK school building
There is a policy-driven focus, at present, on improving the energy performance of buildings. However, energy-related issues alone do not capture the full impact of buildings on occupants and the wider environment. The performance of a building also includes occupant wellbeing and indoor environmental quality. Specifically, in schools, indoor environmental quality (thermal comfort, indoor air quality, lighting and acoustics) is an important aspect. Additionally, the issue of the ‘performance gap’, generally focused on energy, also affects indoor environmental quality parameters and needs to be addressed holistically. This paper reports on a holistic building performance evaluation covering aspects of energy, thermal comfort, indoor air quality, lighting and acoustics. It assesses the performance issues and inter-relationships between energy and indoor environmental quality in a recently built school campus in London. Based on the evidence collated from this case study and supplementary literature, the endemic issues and constraints within the construction industry are explored, such as inappropriate design calculations and resistance to new low-carbon technologies. Further, lessons for improved performance in the design, operation and maintenance of schools are highlighted such as factoring in the changing building use trends during design and the significance of optimal operations and maintenance of building systems for better energy and indoor environmental quality performance. This study shows that if the building design focus primarily remains on energy, unintended consequence of indoor environmental quality underperformance may occur where there are conflicts between energy and indoor environmental quality objectives. An integrated approach to building performance can help address this issue. PRACTICAL APPLICATION: There are often conflicts between energy efficiency and indoor environmental quality (IEQ) objectives in building design and operation. Most building performance evaluations are primarily focused on one set of these performance criteria. This building performance evaluation was done with an integrated energy and IEQ perspective. The study identifies the causes of underperformance in energy and IEQ in a recently built school in London. Some of the findings from this study provide lessons that are relevant across the industry for the delivery of low-carbon and healthy buildings. These lessons include methods to further strengthen the policy frameworks and design protocols along with overall improvements in the processes followed during design, construction and operation of schools and other non-domestic buildings. The paper can also inform building designers, contractors and facility managers about the ways to reduce the performance gap and achieve energy targets without unintended consequences for indoor environment
A stochastic approach to predict the relationship between dwelling permeability and infiltration in English apartments
Reducing adventitious infiltration in order to save energy is important and is highlighted by the building standards of many countries. This operational infiltration is often inferred via the measurement of the air leakage rate at a pressure differential of 50 Pascals. Some building codes, such as the UK’s Standard Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and environmental properties of a dwelling. The scaling does not take account of the permeability of party walls in conjoined dwellings and so cannot be used to differentiate between the infiltration of unconditioned ambient air that requires heating, and conditioned air from an adjacent dwelling that does not. This article evaluates the leakage infiltration ratio in apartments, which share a large proportion of their envelope area with other dwellings. A stochastic approach is used that applies a theoretical model of adventitious infiltration to predict the distribution of the mean infiltration rate and total heat loss during heating hours for a sample of apartments of the English housing stock (a subset of the UK stock) for two extreme assumptions of party wall permeability. Knowledge of party wall permeability is not provided by a standard measurement of air leakage but is shown to be vital for making informed decisions on the implementation of energy efficiency measures. Accordingly, this paper provides probability distribution functions of operational infiltration in English apartments that can be used to help the policy makers of any country whose housing stock contains a large proportion of conjoined dwellings
Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women
<p>Abstract</p> <p>Background</p> <p>Several studies have determined that dietary intake of B vitamins may be associated with breast cancer risk as a result of interactions between <it>5,10-methylenetetrahydrofolate reductase (MTHFR) </it>and <it>methionine synthase </it>(<it>MTR</it>) in the one-carbon metabolism pathway. However, the association between B vitamin intake and breast cancer risk in Brazilian women in particular has not yet been investigated.</p> <p>Methods</p> <p>A case-control study was conducted in São Paulo, Brazil, with 458 age-matched pairs of Brazilian women. Energy-adjusted intakes of folate, vitamin B<sub>6</sub>, and vitamin B<sub>12 </sub>were derived from a validated Food Frequency Questionnaire (FFQ). Genotyping was completed for <it>MTHFR </it>A1298C and C677T, and <it>MTR </it>A2756G polymorphisms. A logistical regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs).</p> <p>Results</p> <p>Neither dietary intake of folate, vitamin B<sub>6</sub>, or vitamin B<sub>12 </sub>nor <it>MTHFR </it>polymorphisms were independently associated with breast cancer risk. Analysis stratified by menopausal status showed a significant association between placement in the highest tertile of folate intake and risk of breast cancer in premenopausal women (OR = 2.17, 95% CI: 1.23–3.83; <it>P</it><sub><it>trend </it></sub>= 0.010). The <it>MTR </it>2756GG genotype was associated with a higher risk of breast cancer than the 2756AA genotype (OR = 1.99, 95% CI = 1.01–3.92; <it>P</it><sub><it>trend </it></sub>= 0.801), and statistically significant interactions with regard to risk were observed between the <it>MTHFR </it>A1298C polymorphism and folate (P = 0.024) or vitamin B<sub>6 </sub>(P = 0.043), and between the <it>MTHFR </it>C677T polymorphism and folate (P = 0.043) or vitamin B<sub>12 </sub>(P = 0.022).</p> <p>Conclusion</p> <p><it>MTHFR </it>polymorphisms and dietary intake of folate, vitamin B<sub>6</sub>, and vitamin B<sub>12 </sub>had no overall association with breast cancer risk. However, increased risk was observed in total women with the <it>MTR </it>2756GG genotype and in premenopausal women with high folate intake. These findings, as well as significant interactions between <it>MTHFR </it>polymorphisms and B vitamins, warrant further investigation.</p
- …