24 research outputs found

    Role for the Abi/Wave Protein Complex in T Cell Receptor-Mediated Proliferation and Cytoskeletal Remodeling

    Get PDF
    SummaryBackgroundThe molecular reorganization of signaling molecules after T cell receptor (TCR) activation is accompanied by polymerization of actin at the site of contact between a T cell and an antigen-presenting cell (APC), as well as extension of actin-rich lamellipodia around the APC. Actin polymerization is critical for the fidelity and efficiency of the T cell response to antigen. The ability of T cells to polymerize actin is critical for several steps in T cell activation including TCR clustering, mature immunological synapse formation, calcium flux, IL-2 production, and proliferation. Activation of the Rac GTPase has been linked to regulation of actin polymerization after TCR stimulation. However, the molecules required for TCR-mediated actin polymerization downstream of activated Rac have remained elusive. Here we identify a novel role for the Abi/Wave protein complex, which signals downstream of activated Rac, in the regulation of actin polymerization and T cell activation in response to TCR stimulation.ResultsHere we show that Abi and Wave rapidly translocate from the T cell cytoplasm to the T cell:B cell contact site in the presence of antigen. Abi and Wave colocalize with actin at the T cell:B cell conjugation site. Moreover, Wave and Abi are necessary for actin polymerization after T cell activation, and loss of Abi proteins in mice impairs TCR-induced cell proliferation and IL-2 production in primary T cells. Significantly, the impairment in actin polymerization in cells lacking Abi proteins is due to the inability of Wave proteins to localize to the T cell:B cell contact site in the presence of antigen, rather than the destabilization of the components of the Wave protein complex.ConclusionsThe Abi/Wave complex is a novel regulator of TCR-mediated actin dynamics, IL-2 production, and proliferation

    Spinal cord injury induces expression of RGS7 in microglia/macrophages in rats

    No full text
    RGS proteins regulate G protein-mediated signalling pathways through direct interaction with the Galpha subunits and facilitation of GTP hydrolysis. An RGS subfamily consisting of RGS 6, 7, 9, and 11 also interacts with the G protein beta subunit Gbeta5 via a characteristic Ggamma-like domain. Thus far, these complexes were found only in neurons, with RGS7 being the most widely distributed in the brain. Here we confirm the expression of RGS7 in spinal neurons and show as a novel finding that following an experimental spinal cord injury in rats, expression of RGS7 is induced in a subpopulation of other cells. Immunofluorescent confocal microscopy using a series of cell specific antibodies identified these RGS7 positive cells as activated microglia and/or invading peripheral macrophages. To rule out interference from the adjacent neurons and confirm the presence of RGS7-Gbeta5 complex in inflammatory cells, we performed immunocytochemistry, RT-PCR, Western blot, and immunoprecipitation using microglial (BV2) and peripheral macrophage (RAW) cell lines. Expression of RGS7 mRNA and protein are nearly undetectable in non-stimulated BV2 and RAW cells, but remarkably increased after stimulation with LPS or TNF-alpha In addition, RGS7-positive cells were also found in the perinodular rim in the rat spleen. Our findings show that RGS7-Gbeta5 complex is expressed in immunocompetent cells such as resident microglia and peripheral macrophages following spinal cord injury. This expression might contribute to the post-traumatic inflammatory responses in the central nervous system
    corecore