851 research outputs found
Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games
Cooperative games provide a framework for fair and stable profit allocation
in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are
such solution concepts that characterize stability of cooperation. In this
paper, we study the algorithmic issues on the least-core and nucleolus of
threshold cardinality matching games (TCMG). A TCMG is defined on a graph
and a threshold , in which the player set is and the profit of
a coalition is 1 if the size of a maximum matching in
meets or exceeds , and 0 otherwise. We first show that for a TCMG, the
problems of computing least-core value, finding and verifying least-core payoff
are all polynomial time solvable. We also provide a general characterization of
the least core for a large class of TCMG. Next, based on Gallai-Edmonds
Decomposition in matching theory, we give a concise formulation of the
nucleolus for a typical case of TCMG which the threshold equals . When
the threshold is relevant to the input size, we prove that the nucleolus
can be obtained in polynomial time in bipartite graphs and graphs with a
perfect matching
The Least-core and Nucleolus of Path Cooperative Games
Cooperative games provide an appropriate framework for fair and stable profit
distribution in multiagent systems. In this paper, we study the algorithmic
issues on path cooperative games that arise from the situations where some
commodity flows through a network. In these games, a coalition of edges or
vertices is successful if it enables a path from the source to the sink in the
network, and lose otherwise. Based on dual theory of linear programming and the
relationship with flow games, we provide the characterizations on the CS-core,
least-core and nucleolus of path cooperative games. Furthermore, we show that
the least-core and nucleolus are polynomially solvable for path cooperative
games defined on both directed and undirected network
Ambiguity and public good provision in large societies
ArticleIn this paper, we consider the effect of ambiguity on the private provision of public goods. Equilibrium is shown to exist and be unique. We examine how provision of the public good changes as the size of the population increases. We show that when there is uncertainty, there may be less free-riding in large societies
Matching structure and bargaining outcomes in buyer–seller networks
We examine the relationship between the matching structure of a bipartite (buyer-seller) network and the (expected) shares of the unit surplus that each connected pair in this network can create. We show that in different bargaining environments, these shares are closely related to the Gallai-Edmonds Structure Theorem. This theorem characterizes the structure of maximum matchings in an undirected graph. We show that the relationship between the (expected) shares and the tructure Theorem is not an artefact of a particular bargaining mechanism or trade centralization. However, this relationship does not necessarily generalize to non-bipartite networks or to networks with heterogeneous link values
On the Price of Anarchy of Highly Congested Nonatomic Network Games
We consider nonatomic network games with one source and one destination. We
examine the asymptotic behavior of the price of anarchy as the inflow
increases. In accordance with some empirical observations, we show that, under
suitable conditions, the price of anarchy is asymptotic to one. We show with
some counterexamples that this is not always the case. The counterexamples
occur in very simple parallel graphs.Comment: 26 pages, 6 figure
- …