1,998 research outputs found

    Auditing: Active Learning with Outcome-Dependent Query Costs

    Full text link
    We propose a learning setting in which unlabeled data is free, and the cost of a label depends on its value, which is not known in advance. We study binary classification in an extreme case, where the algorithm only pays for negative labels. Our motivation are applications such as fraud detection, in which investigating an honest transaction should be avoided if possible. We term the setting auditing, and consider the auditing complexity of an algorithm: the number of negative labels the algorithm requires in order to learn a hypothesis with low relative error. We design auditing algorithms for simple hypothesis classes (thresholds and rectangles), and show that with these algorithms, the auditing complexity can be significantly lower than the active label complexity. We also discuss a general competitive approach for auditing and possible modifications to the framework.Comment: Corrections in section

    Cortical Network Synchrony Under Applied Electrical Field

    Get PDF
    Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for \u3c1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications

    Feasibility and results of awake thoracoscopic resection of solitary pulmonary nodules

    Get PDF
    BACKGROUND: General anesthesia with single-lung ventilation is considered mandatory for thoracoscopic pulmonary resection. We assessed in a randomized study the feasibility and results of awake thoracoscopic resection of solitary pulmonary nodules. METHODS: Between March 2001 and February 2003, 60 patients were randomized into two 30-patients arms: a general anesthesia arm entailing double-lumen intubation and thoracic epidural anesthesia (control group); and an awake arm entailing sole thoracic epidural anesthesia at T4-T5 (awake group). Anesthesia time; operative time; global operating room time; patient satisfaction with the anesthesia and technical feasibility scored into 4 grades (from 1 = poor to 4 = excellent); visual analog pain score (VAS), nursing care (number of patient calls per day), 24 hours changes in arterial oxygenation (DeltaPaO2), and hospital stay were assessed. RESULTS: There was no mortality. There was no difference in technical feasibility between the groups although 2 patients in the awake group required conversion to thoracotomy due to severe adhesions. Other 2 patients in each group required conversion due to unexpected lung cancer requiring lobectomy. Comparisons of awake versus control group results showed that in the awake group, anesthesia satisfaction score was greater (4 vs 3, p = 0.04), whereas DeltaPaO2 (-3 mm Hg vs -6.5 mm Hg, p = 0.002); nursing care (2.5 calls per day vs 4 calls per day, p = 0.0001), and hospital stay (2 days vs 3 days, p = 0.02) were significantly reduced. CONCLUSIONS: In our study, awake thoracoscopic resection of solitary pulmonary nodules proved safely feasible. It resulted in better patient satisfaction, less nursing care and shorter in-hospital stay than procedures performed under general anesthesi

    Histórico e perspectivas das doenças na cultura do milho.

    Get PDF
    bitstream/item/95066/1/circ-193.pd

    Cortical Network Synchrony Under Applied Electrical Field in vitro

    Get PDF
    Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for <1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications

    Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima

    Get PDF
    Members of the periplasmic binding protein superfamily are involved in the selective passage of ligands through bacterial cell membranes. The hyperthermophilic eubacterium Thermotoga maritima was found to encode a highly stable and specific periplasmic arginine-binding protein (TM0593). Following signal sequence removal and overexpression in Escherichia coli, TM0593 was purified by thermoprecipitation and affinity chromatography. The ultra-stable protein with a monomeric molecular weight of 27.7 kDa was found to exist as both a homodimer and homotrimer at appreciable concentrations even under strongly denaturing conditions, with an estimated transition temperature of 116 °C. Its multimeric structure may provide further evidence of the importance of quaternary structure in the movement of nutrients across bacterial membranes. Purified and refolded TM0593 was further characterized by fluorescence spectroscopy, mass spectrometry, and circular dichroism to demonstrate the specificity of the protein for arginine and to elucidate structural changes associated with arginine binding. The protein binds arginine with a dissociation constant of 20 mM as determined by surface plasmon resonance measurements. Due to its high thermodynamic stability, TM0593 may serve as a scaffold for the creation of a robust fluorescent biosensor

    Professionalism and the Millbank Tendency: The Political Sociology of New Labour's employees

    Get PDF
    This article analyses party employees, one of the most under-researched subjects in the study of British political parties. We draw on a blend of quantitative and qualitative data in order to shed light on the social and political profiles of Labour Party staff, and on the question of their professionalisation. The latter theme is developed through a model derived from the sociology of professions. While a relatively limited proportion of party employees conform to the pure ideal-type of professionalism, a considerably greater number manifest enough of the core characteristics of specialisation, commitment, mobility, autonomy and self-regulation to be reasonably described as 'professionals in pursuit of political outcomes'

    Glass-ceramic sealants for SOEC: Thermal characterization and electrical resistivity in dual atmosphere

    Get PDF
    A Ba-based glass-ceramic sealant is designed and tested for solid oxide electrolysis cell (SOEC) applications. A suitable SiO2/BaO ratio is chosen in order to obtain BaSi2O5 crystalline phase and subsequently favorable thermo-mechanical properties of the glass-ceramic sealant. The glass is analyzed in terms of thermal, thermo-mechanical, chemical, and electrical behavior. Crofer22APU-sealant-Crofer22APU joined samples are tested for 2000 h at 850 ◦C in a dual atmosphere test rig having reducing atmosphere of H2:H2O 50/50 (mol%) and under the applied voltage of 1.6 V. In order to simulate the SOEC dynamic working conditions, thermal cycles are performed during the long-term electrical resistivity test. The glass-ceramic shows promising behavior in terms of high density, suitable CTE, and stable electrical resistivity (106–107 Ω cm) under SOEC conditions. The SEM-EDS post mortem analysis confirms excellent chemical and thermo-mechanical compatibility of the glass-ceramic with Crofer22APU

    Discovering Plum, Watermelon and Grape Cultivars Founded in a Middle Age Site of Sassari (Sardinia, Italy) through a Computer Image Analysis Approach

    Get PDF
    The discovery of several waterlogged plant remains in a Middle Ages context (1330–1360 AD) in Sassari (NS, Sardinia, Italy) enabled the characterisation of archaeological plum fruit stones and watermelon and grape seeds through computer image analysis. Digital seed/endocarp images were acquired by a flatbed scanner and processed and analysed by applying computerised image analysis techniques. The morphometric data were statistically elaborated using stepwise linear discriminant analysis (LDA), allowing comparisons among archaeological remains, wild populations and autochthonous cultivars. Archaeological samples of plum were compared with 21 autochthonous cultivars of Prunus domestica from Sardinia, while archaeological watermelon seeds were compared with 36 seed lots of Citrullus from Europe, Africa and Asia. Moreover, archaeological grape seeds were compared with 51 autochthonous traditional cultivars of Vitis vinifera subsp. vinifera from Sardinia, 16 cultivars from Tuscany, six cultivars from Liguria, and eight cultivars from Catalonia (Spain). Archaeological plum remains showed morphological affinity with five cultivars of Sardinia. Seed features of the archaeological watermelon remains demonstrated affiliation with a proper sweet dessert watermelon, Citrullus lanatus, and similarity with some Sardinian cultivars. Regarding the archaeological remains of grape, morphometric comparisons showed a high similarity with autochthonous cultivars from Catalonia and Liguria. This study provides new information about ancient fruit cultivated and consumed during the Middle Ages in Sardinia

    Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. 2. Molecular organization and structural stability

    Get PDF
    ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the development of fluorescent protein biosensors. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the physicochemical properties of a hyperthermophilic binding protein from Thermotoga maritima. We demonstrated preferential binding for the polar amino acid arginine and experimentally monitored the significant stabilization achieved upon binding of ligand to protein. The effect of temperature, pH, and detergent was also studied to provide a more complete picture of the protein dynamics. A protein structure model was obtained and molecular dynamic experiments were performed to investigate and couple the spectroscope observations with specific secondary structural elements. The data determined the presence of a buried ẞ-sheet providing significant stability to the protein under all conditions investigated. The specific amino acid residues responsible for arginine binding were also identified. Our data on dynamics and stability will contribute to our understanding bacterial binding protein family members and their potential biotechnological applications
    • …
    corecore