3,807 research outputs found

    Efficacy of first-line sodium thiosulphate administration in a case of potassium cyanide poisoning

    Get PDF
    Cyanide poisoning may occur following accidental fire-smoke inhalation or deliberate ingestion of salts. Hydroxocobalamin represents a first-line life-saving antidote. Although hydroxocobalamin represents a first-line lifesaving antidote, it is still not promptly available in the emergency department. Sodium thiosulfate can be administered in association with hydroxocobalamin whereas the delayed onset of clinical response makes sodium thiosulfate less suitable for emergency use. We describe a case of cyanide intoxication of a 43-year-old man who ingested an unknown amount of potassium cyanide, purchased via the Internet, in an attempted suicide. At admission to the emergency department, the patient presented GCS 3 with severe lactic acidosis. Orotracheal intubation, gastric lavage and oral activated charcoal were applied. Sodium thiosulfate was available in the emergency department and 10 grams were infused over a 30 minute period. Hydroxocobalamin was prescribed by the poison control centre and 5 grams were infused 2 hours after admission. Following sodium thiosulfate administration the patient was arousable and lactate concentration improved. No adverse effects were noted. Metabolic acidosis completely resolved 12 hours later. Cyanide concentration performed on blood samples collected at admission confirmed high cyanide blood levels (15 mg/L). This report highlights as the first-line administration of sodium thiosulfate, in rapid infusion, resulted effective and safe for cyanide poisoning. Our report suggests that sodium thiosulfate should be considered when hydroxocobalamin is not promptly available in an emergency settin

    Numerical simulations and experimental results of the deployment of thin-walled bistable composite booms

    Get PDF
    For advanced space missions, meeting the concurrent requirements of increasing payload size while minimizing spacecraft volume can be achieved through the utilization of deployable structures. In a previous study, we conducted a characterization of a thin/walled boom in terms of its interaction between attitude and elastic dynamics when fully deployed. In this current work, we have developed a numerical model to analyze the critical phase of the deployment process. We compared the model's predictions with theoretical expectations and experimental data, and found a strong agreement between them. Additionally, we investigated the effects of bistability on the deployment process by conducting experiments on both a bistable and a monostable boom. Lastly, we performed deployment tests on a free-floating platform, which emulates a small satellite, to quantitatively measure the attitude perturbations caused by the rapid deployment of the boom

    Airborne laser systems for atmospheric sounding in the near infrared

    Get PDF
    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. (cont.
    • …
    corecore