73 research outputs found

    A Risk-Based Methodology and Tool Combining Threat Analysis and Power System Security Assessment

    Get PDF
    A thorough investigation of power system security requires the analysis of the vulnerabilities to natural and man-related threats which potentially trigger multiple contingencies. In particular, extreme weather events are becoming more and more frequent due to climate changes and often cause large load disruptions on the system, thus the support for security enhancement gets tricky. Exploiting data coming from forecasting systems in a security assessment environment can help assess the risk of operating power systems subject to the disturbances provoked by the weather event itself. In this context, the paper proposes a security assessment methodology, based on an updated definition of risk suitable for power system risk evaluations. Big data analytics can be useful to get an accurate model for weather-related threats. The relevant software (SW) platform integrates the security assessment methodology with prediction systems which provide short term forecasts of the threats affecting the system. The application results on a real wet snow threat scenario in the Italian High Voltage grid demonstrate the effectiveness of the proposed approach with respect to conventional security approaches, by complementing the conventional "N - 1" security criterion and exploiting big data to link the security assessment phase to the analysis of incumbent threat

    First Estimations of Cosmological Parameters From BOOMERANG

    Get PDF
    The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic flight of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter hh, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density Ωbh2\Omega_b h^2 above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density Ωtot\Omega_{\rm {tot}}, independent of data from high redshift supernovae.Comment: As submitted to PRD, revised longer version with an additional figur

    Images of the Early Universe from the BOOMERanG experiment

    Get PDF
    The CMB is the fundamental tool to study the properties of the early universe and of the universe at large scales. In the framework of the Hot Big Bang model, when we look to the CMB we look back in time to the end of the plasma era, at a redshift ~ 1000, when the universe was ~ 50000 times younger, ~ 1000 times hotter and ~ 10^9 times denser than today. The image of the CMB can be used to study the physical processes there, to infer what happened before, and also to study the background geometry of our Universe

    CMB Analysis of Boomerang & Maxima & the Cosmic Parameters {Omega_tot,Omega_b h^2,Omega_cdm h^2,Omega_Lambda,n_s}

    Get PDF
    We show how estimates of parameters characterizing inflation-based theories of structure formation localized over the past year when large scale structure (LSS) information from galaxy and cluster surveys was combined with the rapidly developing cosmic microwave background (CMB) data, especially from the recent Boomerang and Maxima balloon experiments. All current CMB data plus a relatively weak prior probability on the Hubble constant, age and LSS points to little mean curvature (Omega_{tot} = 1.08\pm 0.06) and nearly scale invariant initial fluctuations (n_s =1.03\pm 0.08), both predictions of (non-baroque) inflation theory. We emphasize the role that degeneracy among parameters in the L_{pk} = 212\pm 7 position of the (first acoustic) peak plays in defining the Ωtot\Omega_{tot} range upon marginalization over other variables. Though the CDM density is in the expected range (\Omega_{cdm}h^2=0.17\pm 0.02), the baryon density Omega_bh^2=0.030\pm 0.005 is somewhat above the independent 0.019\pm 0.002 nucleosynthesis estimate. CMB+LSS gives independent evidence for dark energy (Omega_\Lambda=0.66\pm 0.06) at the same level as from supernova (SN1) observations, with a phenomenological quintessence equation of state limited by SN1+CMB+LSS to w_Q<-0.7 cf. the w_Q=-1 cosmological constant case.Comment: 11 pages, 3 figs., in Proc. IAU Symposium 201 (PASP), CITA-2000-6

    The Quintessential CMB, Past & Future

    Get PDF
    The past, present and future of cosmic microwave background (CMB) anisotropy research is discussed, with emphasis on the Boomerang and Maxima balloon experiments. These data are combined with large scale structure (LSS) information and high redshift supernova (SN1) observations to explore the inflation-based cosmic structure formation paradigm. Here we primarily focus on a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot}, Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and experimental variables, we find the current CMB+LSS+SN1 data gives Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory. Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than the current nucleosynthesis estimate. Substantial dark energy is inferred, Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7 limit is quite consistent with the w_Q=-1 cosmological constant case. Though forecasts of statistical errors on parameters for current and future experiments are rosy, rooting out systematic errors will define the true progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6

    Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data

    Full text link
    We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment's time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.Comment: 7 pages, 6 figures, to appear in proc. of the MPA/ESO/MPA conference "Mining the Sky", Garching, July 31 - August 4 200

    First results from the BOOMERanG experiment

    Get PDF
    We report the first results from the BOOMERanG experiment, which mapped at 90, 150, 240 and 410 GHz a wide (3%) region of the microwave sky with minimal local contamination. From the data of the best 150 GHz detector we find evidence for a well defined peak in the power spectrum of temperature fluctuations of the Cosmic Microwave Background, localized at =197±6\ell = 197 \pm 6, with an amplitude of (68±8)μKCMB(68 \pm 8) \mu K_{CMB}. The location, width and amplitude of the peak is suggestive of acoustic oscillations in the primeval plasma. In the framework of inflationary adiabatic cosmological models the measured spectrum allows a Bayesian estimate of the curvature of the Universe and of other cosmological parameters. With reasonable priors we find Ω=(1.07±0.06)\Omega = (1.07 \pm 0.06) and ns=(1.00±0.08)n_s = (1.00 \pm 0.08) (68%C.L.) in excellent agreement with the expectations from the simplest inflationary theories. We also discuss the limits on the density of baryons, of cold dark matter and on the cosmological constant.Comment: Proc. of the CAPP2000 conference, Verbier, 17-28 July 200

    Detection of anisotropy in the Cosmic Microwave Background at horizon and sub-horizon scales with the BOOMERanG experiment

    Get PDF
    BOOMERanG has recently resolved structures on the last scattering surface at redshift \sim 1100 with high signal to noise ratio. We review the technical advances which made this possible, and we focus on the current results for maps and power spectra, with special attention to the determination of the total mass-energy density in the Universe and of other cosmological parameters

    The Cosmic Background Radiation circa nu2K

    Full text link
    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot}, Omega_\Lambda,n_s,\tau_C, \sigma_8}. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature (Omega_{tot}=1.08\pm 0.06) and the initial fluctuations were nearly scale invariant (n_s=1.03\pm 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates (omega_b=0.030\pm 0.005 cf. 0.019\pm 0.002). The CDM density is in the expected range (omega_{cdm}=0.17 \pm 0.02). Even stranger is the CMB+LSS evidence that the density of the universe is dominated by unclustered energy akin to the cosmological constant (Omega_\Lambda=0.66\pm 0.06), at the same level as that inferred from high redshift supernova observations. We also sketch the CMB+LSS implications for massive neutrinos.Comment: 7 pages, 4 figs., in Proc. Neutrino 2000 (Elsevier), CITA-2000-6

    Cosmology from Maxima-1, Boomerang and COBE/DMR CMB Observations

    Full text link
    Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE-DMR, provide consistent and high signal-to-noise measurements of the CMB power spectrum at spherical harmonic multipole bands over 2<\ell\lta800. Analysis of the combined data yields 68% (95%) confidence limits on the total density, Ωtot1.11±0.07(0.12+0.13)\Omega_{\rm {tot}}\simeq 1.11 \pm 0.07 (^{+0.13}_{-0.12}), the baryon density, Ωbh20.0320.004+0.005(0.008+0.009)\Omega_b h^2\simeq 0.032^{+0.005}_{-0.004} (^{+0.009}_{-0.008}), and the scalar spectral tilt, ns1.010.07+0.09(0.14+0.17)n_s\simeq1.01^{+0.09}_{-0.07} (^{+0.17}_{-0.14}). These data are consistent with inflationary initial conditions for structure formation. Taken together with other cosmological observations, they imply the existence of both non-baryonic dark matter and dark energy in the universe.Comment: 5 Pages, 2 Figures, Changes to match published versio
    corecore